Systemic pathology

The respiratory tract

Histology of respiratory tract

Cellular components of bronchial mucosa

The respiratory membrane

Chronic polypous rhinitis

x chronic proliferative inflammation
\times aetiology:
\Rightarrow chronic irritation
\Rightarrow allergy
\Rightarrow repeated acute inflammations

Polypous chronic rhinitis

\times Gross:
\Rightarrow mucosal polyps, often multiple
\Rightarrow variable size ($\mathrm{mm}-2 \mathrm{~cm}$)
\times Micro:
\Rightarrow oedematous mucosal connective tissue
\Rightarrow Iymphoplasmocytic reactive infiltration, admixture of eosinophils, event. neutrophils
\Rightarrow mucinous hyperplasia
\Rightarrow covered by hyperplastic respiratory epithelium, squamous metaplasia possible

Polypous chronic rhinitis

Polypous chronic rhinitis

Polypous chronic rhinitis

Asthma bronchiale

xrecurrent attacks of bronchospasm with exspiratory dyspnoea
x status asthmaticus:
\Rightarrow increased frequency of attacks - permanent bronchospasm
\Rightarrow may be lethal
xetiology:
\Rightarrow Hypersenzitivity I.type
\times variants:
\Rightarrow Extrinsic (environmental factors):
-Atopic, IgE \rightarrow mast cells degranulation..., bronchioloconstriction, increased vascular permeability and mucus secretion + eosinophils activation
\Rightarrow Intrinsic:
-hyperreactive URT, non-atopic

Asthma bronchiale

\times Gross (patients who died during status asthmaticus):
\Rightarrow acute emphysema
\Rightarrow mucus plugs in peripheral bronchi and bronchioles
x Micro:
\Rightarrow intraluminal:

- mucus, eosinophils, Charcot-Leyden crystals, cellular detritus
\Rightarrow bronchial wall:
- oedema of the mucous membrane
- thickening (collagenisation) of the sub-basement membrane tissue
- mucous glands hypertrophy, eosinophil-rich inflammatory infiltrate

Asthma bronchiale

Bronchiectasis

x permanent abnormal dilatation of bronchi
x arising from the weakening of the walls or changes in air pressure
x morphology:
\Rightarrow cylindrical
\Rightarrow saccular
\Rightarrow fusiform

Bronchiectasis

x aetiology:
\Rightarrow congenital/hereditary conditions:

- incomplete development of bronchial wall
- Kartagener syndrome
- primary ciliary dysgenesis
\Rightarrow acquired:
- chronic inflammations
- changes of the pressure
- chronic pulmonary collapse

Bronchiectasis

x complications:
\Rightarrow inflammations:

- chronic purulent bronchitis
- bronchopneumonia including abscess formation
\Rightarrow fibrosis, pulmonary hypertension and cor pulmonale
\Rightarrow secondary AA amyloidosis

Bronchiectasis

Bronchiectasis

Pulmonary emphysema

x regressive change (atrophy)
x abnormal permanent enlargement of the airspaces in pulmonary tissue
x aetiology (combination of several factors):
\Rightarrow smoking
\Rightarrow deficiency of a1-antitrypsin
x types:
\Rightarrow alveolar:

- acute
- chronic
\Rightarrow interstitial - airway rupture (trauma)

Alveolar emphysema

\times acute:
\Rightarrow alveolar septa are not destroyed
\Rightarrow rather pulmonary hyperinflation or distention
x chronic:
\Rightarrow permanent enlargement of airspaces distal to terminal bronchioles
\Rightarrow destruction of alveolar walls
\Rightarrow part of COPD (chronic obstructive pulmonary disease)

- combination of chronic bronchitis and chronic emphysema

Alveolar emphysema

\times types:
\Rightarrow centrilobular (centriacinar):

- upper lobes - apex, more in males,
- most commonly seen in smokers without congenital -antitrypsin deficiency (but + chronic bronchitis), possible professional disease - dust
\Rightarrow panacinar:
- often lower lung zones; significant microscopic changes; antitrypsin deficiency, old age
\Rightarrow distal acinar (paraseptal):
- adjacent to pleura, upper lobes foci of fibrosis, formation of cystlike structures - bullae (pneumothorax risk)
\Rightarrow irregular:
- associated with scarring, usually postinflammatory

Alveolar emphysema

\times Gross:
\Rightarrow enlarged, voluminous lungs, light, pale, dry, emphysematous bullae
\times Micro:
\Rightarrow thinning and destruction of alveolar walls
\Rightarrow deformation of bronchiolar walls
\Rightarrow chronic inflammatory changes

Emphysema

x pathogenesis and complications:
thinning of alveolar walls and capillaries \longrightarrow
reduced blood supply \rightarrow
complete destruction of alveolar walls \rightarrow
difficult expiration + decreasing of lung capacity \rightarrow hypoxemia \rightarrow
vasoconstriction \rightarrow
secondary pulmonary hypertension $\rightarrow \rightarrow$ cor pulmonale

Emphysema

Normal lung and pulmonary emphysema

Bullous emphysema

Panacinar emphysema

1 Enlargement of airspaces with thinning and destruction of alveolar septa
2 Bronchiole with mucous secretions

Hemorrhagic pulmonary infarction

x aetiology:
\Rightarrow thrombembolism of a. pulmonalis branches in the setting of compromised cardiovascular status (passive venous congestion)
x typically hemorrhagic
x often in lower lung lobes adjacent to pleura
x often multiple
x healing:
\Rightarrow granulation tissue, later formation of fibrous scar

Hemorrhagic pulmonary infarction

\times Gross:
\Rightarrow wedge-shaped focus of tissue with sharp borders
\Rightarrow dark red-blue (new), yellowish-grey (older)
\Rightarrow variable size
\Rightarrow solid consistency
\times Micro:
\Rightarrow coagulative necrosis of lung parenchyma
\Rightarrow Iarge extravasations of erythrocytes
\Rightarrow formation of abscess at secondary infection
\Rightarrow reactive acute fibrinous pleuritis
\Rightarrow healing - scarring + emphysema (diff.dg. x tumor)

Hemorrhagic pulmonary infarction

1. Necrotic focus

2. Lung parenchyma

Hemorrhagic pulmonary infarction

Necrotic lung parenchyma

Chronic pulmonary venous congestion

x associated with chronic left-sided cardiac insufficiency
\Rightarrow etiology:

- ischemic heart disease, systemic hypertension, valvular disorders, cardiomyopathy
x clinically (.,asthma cardiale"):
\Rightarrow cough
- rusty sputum
\Rightarrow shortness of breath (dyspnoea)
- ortopnoea
- paroxysmal nocturnal dyspnoea
- relieved by sleeping with elevated head („additional pillows needed")

Chronic pulmonary venous congestion

\times Gross:
\Rightarrow slightly enlarged lungs
\Rightarrow solid consistency
\Rightarrow rusty-brown color

- rusty/cyanotic lung induration
\times Micro:
\Rightarrow congestion of alveolar capillaries
\Rightarrow alveolar hemorrhage with siderophages:
- histiocytes with cytoplasmic granules of hemosiderin
\Rightarrow fibrotization of alveolar walls

Chronic pulmonary venous congestion

1. Oedematic fluid

3. Siderophages

Chronic pulmonary venous congestion

Chronic pulmonary venous congestion

Perls' reaction - iron pigment hemosiderin colored blue

Alveolar oedema

x fluid accumulation in alveoli
x clinically:
\Rightarrow expectoration of bubbly watery pinkish sputum
x patogenesis:
$\Rightarrow \uparrow$ vascular permeability (injury to the alveolar-capillary wall)
\Rightarrow 个 vascular hydrostatic pressure
$\Rightarrow \downarrow$ intravascular osmotic pressure
\Rightarrow Iymphatic drainage obstruction

Alveolar oedema

\times Gross:
\Rightarrow lungs enlarged, heavy, conested
\Rightarrow bubbly fluid flowing out of the tissue +/- present in bronchi
\times Micro:
\Rightarrow alveoli filled with pink, homogenous fluid + air bubbles
\Rightarrow dilatation and hyperemia of alveolar wall capillaries

Alveolar oedema

Amniotic fluid aspiration

x minor aspiration usual during birth
\Rightarrow clinically insignificant
\times massive aspiration associated with fetus asphyxia
\Rightarrow umbilical cord or placental disorders
x clinic:
\Rightarrow changes in fetal heart rate - immediate medical intervention necessary!

Amniotic fluid aspiration

\times Micro:
\Rightarrow keratin masses in bronchi and alveoli
\Rightarrow amniotic cells
\Rightarrow Ianugo (thin primary hairs)
\Rightarrow meconium bodies (from fetus intestinal content)
\Rightarrow infected amniotic fluid \rightarrow fetal death, adnate pneumonia

Amniotic fluid aspiration, keratin in bronchiole

Amniotic fluid aspiration, keratin in alveoli

Pulmonary inflammations classification

\times superficial:
\Rightarrow Iobar pneumonia
\Rightarrow bronchopneumonia
x interstitial
\Rightarrow purulent (abscess, gangrene)
\Rightarrow non-purulent

- infectious (acute) - atypical pneumonia
- non-infectious (chronic)

Lobar pneumonia

x superficial diffuse fibrinous inflammation
x affecting major part / entire lobe of a lung
\Rightarrow similar histological features in the same time
\Rightarrow older/immunocompromised patients \rightarrow lethal without antibiotic therapy
\times untreated -4 stages:
\Rightarrow congestion (+ oedema)
\Rightarrow red hepatization (inflammatory infiltrate + congestion)
\Rightarrow grey hepatization (fibrin)
\Rightarrow resolution (resorption)

Lobar pneumonia

x healing:
\Rightarrow ad integrum
\Rightarrow complications:

- empyema
- abscess
- carnification
- sepsis
- metastatic purulent inflammation
- e.g.leptomeningitis, pericarditis, endocarditis...

Lobar pneumonia, red hepatization

Lobar pneumonia, grey hepatization

Lobar pneumonia

1. Alveolar walls

Lobar pneumonia

1. Alveolar walls

Lobar pneumonia

Bronchopneumonia

x superficial type of pneumonia characterized by multiple foci of isolated, acute consolidation, affecting one or more pulmonary lobules
x inflammation spreads from bronchi
x aetiology:
\Rightarrow streptococcus, staphylococcus, haemophilus, klebsiella
\Rightarrow legionella - micro:

- fibrinous purulent bronchopneumonia associated with fibrinous pleuritis
\times possible secondary confluent inflammation, overlap patterns
x inflammatory complications:
\Rightarrow pleuritis
\Rightarrow abscess
\Rightarrow sepsis

Bronchopneumonia

Gross:
\Rightarrow oedema, hyperemic tissue with small grey-yellow foci
\times Micro:
\Rightarrow types of exsudate:

- serous
- fibrinous
- suppurative (purulent)
\Rightarrow abscessing form - suppurative destruction of alveolar walls

Bronchopneumonia

Abscessing bronchopneumonia

Purulent bronchopneumonia

Abscessing bronchopneumonic

Infectious interstitial pneumonia

x Etiology:
\Rightarrow viruses (incl. rubeola, varicella)
\Rightarrow mycoplasma, chlamydia, coxiella, etc.
\Rightarrow pneumocystis
\times Symptoms:
\Rightarrow fever, dyspnoea, dry cough, auscultation may be normal (empty alveoli), x massive changes on X-ray
\times Healing:
\Rightarrow ad integrum
\Rightarrow secondary bacterial pneumonia
\Rightarrow cryptogenic organizing pneumonia possible

Infectious interstitial pneumonia

x Micro:

\Rightarrow 1) common histological features:

- oedema and dilatation of alveolar walls
- interstitium with mononuclear infiltrate (lymphocytes, macrophages, plasma cells)
- possible ARDS - „hyaline membranes" formation
- necrotic pneumocytes and fibrin
- eosinophilic material lining the lumen of alveoli

Infectious interstitial pneumonia

\Rightarrow 2) inclusion pneumonia:

- typical inclusions and cytopatologic changes of pneumocytes
- CMV:
- large pneumocytes with basophilic intranuclear inclusions
- Varicella, adenovirus:
- intranuclear inclusions
- Measles:
- giant cell pneumonia
- multinucleated cells in alveoli and bronchioli (Warthin-Finkeldey cells)
- Pneumocystis pneumonia

Pneumocystis pneumonia

x etiology:
\Rightarrow Pneumocystis jirovecii
(opportunistic fungal infection, immunocompromised patients)
\times Micro:
\Rightarrow widened alveolar septa, intraalveolar bubbly eosinophilic material:

- pneumocystis capsules
\Rightarrow special histological stains:
- Groccott silver impregnation (black)
- Giemsa (blue)
- PAS

Pneumocystis pneumonia

1. Alveolar walls filled with monocellular infiltration

2. Bubbly eosinophilic material

Pneumocystis pneumonia

1. Alveolar walls filled with monocellular infiltration

2. Bubbly eosinophilic material

Neinfekční intersticiální pneumonie

× Klasifikace:
\Rightarrow Kryptogenní fibrotizující alveolitida (idiopatická intersticiální pneumonie)

- Běžná
- Nespecifická
- Deskvamativní
- Obrovskobuněčná
\Rightarrow Extrinzická fibrotizující alveolitida (hypersenzitivní pneumonitida)

Idfopathic pulmonary fibrosis

\times usual interstitial pneumonia" (UIP):

$\Rightarrow 70 \%$ of all of idiopathic interstitial pneumonias
\Rightarrow etiology:

- in some collagenosis or in association with abnormalities of serum proteins
-smoking
- unclear
\Rightarrow dismal prognosis: lung transplantation
\Rightarrow Mikro:
-subpleural and a paraseptal foci of fibroblasts/fibrosis and chronic inflammatory infiltrate, cystic spaces - honeycombing
- irregular distribution of histological features - temporal heterogeneity

Idfopathic pulmonary fibrosis

x non-specific interstitial pneumonia (NSIP): \Rightarrow commonly women, without link with smoking
\Rightarrow better prognosis

- treated with corticosteroids
\Rightarrow Micro:
- chronic interstitial inflammation +/- fibrosis
- no honeycombing
- regular distribution of changes

Usual interstitial pneumonia

Usual interstitial pneumonia

Usual interstitial pneumonia

Pneumoconiosis

* an occupational and restrictive lung disease caused by the inhalation of specific dust
x sequels: inert (simple), fibrous, allergic, neoplastic
x high fibrogenicity of cristalline silica dust and asbestos
$\times 3$ basic types:
coal-worker's pneumoconiosis
\Rightarrow silicosis
\Rightarrow asbestosis

Silicosis

\times Chronic progressive pneumoconiosis
x Silicone dioxide particles (0,2-2 $\mu \mathrm{m}$) toxic to macrophages - focal necrosis + release of fibrogenic factors - fibrosis
*X-ray - reticular fibrosis, nodules, diffuse fibrosis
x lung insufficiency
\times cor pulmonale

Silicosis

\times Gross (stages):
\Rightarrow reticular fibrosis
\Rightarrow silicotic nodules
\Rightarrow progressive massive fibrosis
\times Micro:
\Rightarrow nodules with concentric arrangement of hyalinized fibers and necrosis
\Rightarrow anthracophages in the periphery of the nodule
\Rightarrow emphysema in adjacent pulmonary tissue
\Rightarrow particles seen under polarized light

Silicotic nodule - Iung

Pulmonary silicosis

Silica particles under polarized light

Diffuse alveolar damage (Acute Respiratory Distress Syndrome,

* DAD (ARDS, RDS)
\times clinical:
\Rightarrow progressive respiratory insufficiency associated with shortness of breath and hypoxia, high mortality
x Etiology:
\Rightarrow Primary ARDS:
- lung inflammation/infection, aspiration of gastric content, mechanical trauma incl. chest contusion, fat embolism, near-drowning, ionizing radiation, inhaled irritants (smoke, chemicals),
\Rightarrow Secondary ARDS:
- trauma (head) or sepsis
- acute pancreatitis
- renal insufficiency (uremia)
- burns
- hematologic conditions - DIC, multiple transfusions
- chemical injury (heroin overdose, acetylsalicylates, ...)

Diffuse alveolar damage (Acute Respiratory Distress Syndrome,

\times Gross:
\Rightarrow heavy lung
\Rightarrow dark red color
\Rightarrow boggy
\times Micro:
\Rightarrow exsudative phase:

- capillary congestion, oedema, hyaline membranes formation within 48 hours
\Rightarrow proliferative phase:
- epithelium regeneration (type II. pneumocytes)
- hyaline membranes ingested by macrophages
- proliferation of fibroblasts in alveolar walls -> pulmonary fibrosis possible

Diffuse alveolar damage (Acute Respiratory Distress Syndrome

Diffuse alveolar damage (Acute Respiratory Distress Syndrome

 interalveolar septa with a chronic inflammatory infiltrate.

Granulomatous inflammations - Tuberculosis

x aetiology

\Rightarrow Mycobacterium tuberculosis, M. bovis
\Rightarrow special Ziehl-Neelsen stain

- PCR more sensitive
x delayed-type hypersensitivity
(type IV. hypersensitivity)
\Rightarrow T cells-mediated immune memory response to TBC antigens (granulomas)

Tuberculosis - morphological features

x tbc granuloma - proliferative form
\Rightarrow host resistance
\Rightarrow specific granulation tissue: epithelioid macrophages + Langhans giant cells
x tbc exsudate - exsudative form (meningitis)
\Rightarrow allergy
\Rightarrow serofibrinous exsudate + Orth cells (macrophages)

+ caseification
\Rightarrow cheese-like, caseous necrosis - sensibilization?
+ colliquation (liquefaction)
\Rightarrow after release of proteolytic enzymes by neutrophils
+ calcification

Tbc granuloma

\qquad

1 caseous necrosis
2 epithelioid macrophages
3 Langhans giant cells
4 lymphocytes

Langhans giant cells

Caseous necrosis

Sarcoidosis

x chronic granulomatous inflammatory disease of unknown aetiology
\times affected tissue:
\Rightarrow mediastinal lymph nodes, lungs, skin, eye
\Rightarrow granulomas can affect any organ
x small regular granulomas similar to TBC granulomas, but without caseous necrosis, fibrosis usually more pronounced
\times cytoplasmic bodies of Langhans giant cells, not specific:
\Rightarrow asteroid inclusions
\Rightarrow Schaumann bodies
\times dg. per exclusionem - necessary elimination of TBC, fungal infection etc.

Sarcoidosis

Pulmonary chondrohamartoma

x hamartoma? benign tumor?
x incidental X-ray finding
x differential diagnosis x malignant tumors important!

Pulmonary chondrohamartome

\times Gross:
\Rightarrow whitish yellow
\Rightarrow well demarcated
\Rightarrow lobular structure
x Generally formed of mixture of homologous nonorganised afunctional tissues :
\Rightarrow cartilage
\Rightarrow connective tissue
\Rightarrow fat
\Rightarrow tubular structures with epithelium

Pulmonary chondrohamartome

1. Cartilage

2. Fat tissue

Pulmonary chondrohamartoma

Pulmonary chondrohamartome

1. Cartilage
2. Fat tissue
3. Connestive tissue
4. Tubular structures

Bronchogenic carcinoma

x incidence:
\Rightarrow in CZE males 100/100 000 (the most common malignancy of men),
\Rightarrow females 25/100 000 (the 3rd most common malignancy of women, \uparrow tendency)
x aetiology:
\Rightarrow smoking

- generally 20X higher risk in smokers
- 20 cigarettes/day = 20 years, 40 cigarettes/day = 10 years...
- magic threshold 200000 cigarettes
\Rightarrow asbestos, Hg, Ni, As
\Rightarrow ionization
\Rightarrow radioactive radon
\Rightarrow dust particles
\Rightarrow familial predisposition

Bronchogenic carcinoma

x Most common primary malignancy
$\times 5$ year survival 5-7\%
$\times 4-7$ decenium, more commonly males
x Clinical symptoms:
\Rightarrow weight loss, chronic cough, haemoptysis, dyspnoea, chest pain, paraneoplastic syndromes (ACTH, ADH, PTH)

Bronchogenic carcinoma

x local complications:
\Rightarrow depends on the localization of the tumor:

- lung collapse, bronchiectasis, bronchopneumonia, gangrene
- Jeros cavern
- destruction of vascular wall by necrotic mass of tumor
- fatal bleeding
\Rightarrow paraneoplastic syndromes
- Aberrant production of peptide hormones (ACTH,ADH,PTH,..)
xclinical types:
\Rightarrow small cell lung carcinoma (SCLC)
\Rightarrow non-small cell lung carcinoma (NSCLC)

Small cell lung carcinoma

x undifferentiated (high grade) neuroendocrine tumor
× 20 \% of all bronchogenic carcinomas

* associated with smoking
x localized in Iung hilus
x early metastatic spread, widespread dissemination
\Rightarrow Iymphatic and hematogenous (LN, liver, brain, bones, kidney, adrenals, ...)

Small-cell Iung carcinoma

\times histologic types:
\Rightarrow small cell (,oat cell carcinoma")
\Rightarrow intermediate (now included into small cell type)
\Rightarrow combined
\times Micro:
\Rightarrow small cells with scant cytoplasm (size < 3 Iymphocytes)
\Rightarrow small round - elongated dark blue nuclei without obvious nucleoli (oat cell carcinoma)
\Rightarrow solid growth
\Rightarrow neurosecretory granules in cytoplasm

- chromogranin, synaptophysin

Small-cell lung carcinoma

Small-cell Iung carcinoma

Small-cell Iung carcinoma

Non-small cell lung carcinoma

x squamous cell carcinoma
\times adenocarcinoma
\Rightarrow adenocarcinoma in situ
\Rightarrow minimally invasive:

- non-mucinous
- mucinous
- mixed
\Rightarrow invasive:
- lepidic
- acinar
- papillary
- micropapillary
- solid
\times large cell lung carcinoma
\times other, incl. mixed

Squamous cell carcinoma

x male 40\%, female 20\%
x strongly associated with smoking
x typical perihilar localisation (central>peripheral)
x commonly slow progression from squamous metaplasia - dysplasia - ca in situ
\Rightarrow late metastases
\times Micro:
\Rightarrow squamous cell carcinoma of common type

- polygonal shaped cells in solid nests, keratin pearls, cell junctions
\Rightarrow variable differentiation

Squamous-cell lung carcinomes

1. Segmental bronchus
2. Tumor

Squamous cell Iung carcinome

1. Tumor localized in the periphery
2. Central necrosis

3. Tumor in bronchus
4. Segmental bronchus

Squamous cell carcinoma

1. Solid nests of malignant keratinocytes
2. Keratin pearls
3. Stroma of the tumor

Squamous cell carcinoma

Squamous-cell carcinoma

1. Cell junctions
2. Nucleus with prominent nucleoli

Adenocarcinoma

x male 20%, female 40%;
x most cases in smokers, but the most common type in non-smokers
x typically localized in the periphery, subpleural \Rightarrow late symptoms !!! Commonly accidental finding on X-ray/CT
x formerly used term:
\Rightarrow bronchioloalveolar adenocarcinoma (BAC) no more in use (but still present in WHO classification of lung tumors)

Adenocarcinoma

\times classification:
\Rightarrow Adenocarcinoma in situ - A/S (size $\leq 3 \mathrm{~cm}$):

- non/mucinous (earlier BAC),
- mucinous
- mixed
- no stromal/vascular/pleural invasion present
\Rightarrow Minimally invasive ACA (size $\leq 3 \mathrm{~cm}$ and $\leq 5 \mathrm{~mm}$ invasion): idem
- apart of lepidic growth other types of spread (papillary, solid....) or stromal invasion present
- no vascular/pleural invasion present
\Rightarrow Invasive ACA:
- Lepidic
- Acinar
- Papillary
- Micropapillary
- Solid

Adenocarcinoma

Adenocarcinoma

Adenocarcinoma

Adenocarcinoma

Adenocarcinoma

Adenocarcinoma

Structures of an acinary and papillary formed adenocarcinoma

Adenocarcinoma

Cytology of malignant cells - anisocytosis and anisokaryosis

Adenocarcinoma

Cytology of malignant cells - anisocytosis and anisokaryosis

AIS/minimally invasive

 ACA non/mucinous (earlier BAC)

AIS/minimally invasive ACA non/mucinous (earlier BAC)

Large cell /ung carcinoma

x undifferentiated non-small cell carcinoma
\times Micro:
\Rightarrow atypical pleomorphic cells
\Rightarrow absent features of small cell carcinoma, adenocarcinoma or squamous cell carcinoma

Large cell Iung carcinoma

Large cell Iung carcinoma

Large cell Iung carcinoma

