Assoc. Prof. MUDr. Markéta Bébarová, Ph.D.

Department of Physiology, Faculty of Medicine, Masaryk University

This presentation includes only the most important terms and facts. Its content by itself is not a sufficient source of information required to pass the Physiology exam.

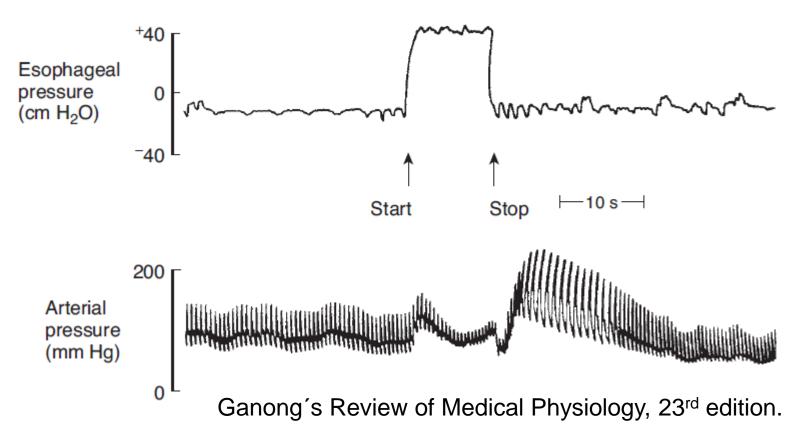
- Regulation of circulation a complex system of feedbacks, dynamic balance.
- Individual parameters regulated by neural and humoral mechanisms, both systemic and local – their quantitative ratio changes dynamically.
- Physiological stimuli in a healthy person rather standard reaction.

- Orthostatic / Clinostatic Reaction
- a change of the body position from lying to standing / from standing to lying
- due to gravity:

 \rightarrow \uparrow BP in all vessels below the heart level

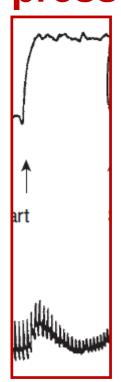
 $\rightarrow \downarrow$ BP in all vessels above the heart level

sudden closure of venous valves due to \uparrow BP + \uparrow venous pressure due to continuous blood inflow from arteries \rightarrow total filling of veins considerably \uparrow , blood flow sustained \rightarrow dilation of veins

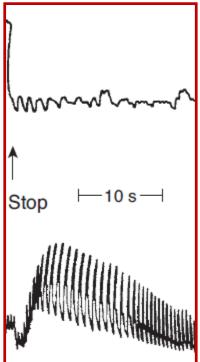

↓ venous return \rightarrow ↓ stroke volume \rightarrow ↓ **BP** (also due to the direct effect of gravity) \rightarrow inhibition of baroreceptors (baroreflex) orthostatic hypotension

- Orthostatic / Clinostatic Reaction
- a change of the body position from lying to standing / from standing to lying
- orthostatic reaction due to gravity:
 - a) acute reaction passes within 1 min (*tilt-up test*)
 - b) subsequently:
 - ↑ capillary filtration $\rightarrow \downarrow$ plasma volume

↑ level of ADH + ↑ activity of RAS + reflex vasoconstriction in kidneys $\rightarrow \downarrow$ excretion of salt and water in kidneys


Valsalva Maneuver

 forced expiration over closed or narrowed glottis (cough, defecation, lifting of heavy objects, *etc.*)


- Valsalva Maneuver
- start of maneuver $\rightarrow \uparrow$ intrathoracic pressure: $\rightarrow \uparrow BP$

→ compression of chest vessels → ↓ venous return → ↓ stroke volume (Frank-Starling) → ↓ pulse and mean BP → inhibition of baroreceptors → reflex tachycardia and vasoconstriction → mean BP at the level before maneuver

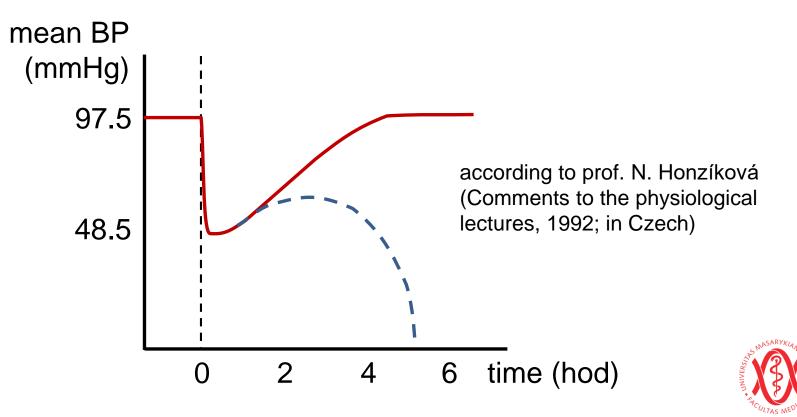
- Valsalva Maneuver
- end of maneuver $\rightarrow \downarrow$ intrathoracic pressure: \rightarrow opposite changes

- Respiratory Sinus Arrhytmia
- rhythmic changes of heart rate related to breathing
- inspiration $\rightarrow \uparrow$ HR, expiration $\rightarrow \downarrow$ HR
- inspiration $\rightarrow \uparrow$ lung volume (stretch rec.) $\rightarrow \uparrow$

↑ venous return

Bainbridge reflex

(distension of atria)


↑ stroke volume \rightarrow ↑ BP \rightarrow stimulation of baroreceptors \rightarrow ↓ HR (during expiration)

HR

- Diving Reflex
- diving excitation of receptors of *n. trigeminus* by cold water:
 - \rightarrow apnoe
 - \rightarrow bradycardia
 - \rightarrow peripheral vasoconstriction
 - ~ conservation of limited O_2 reserves for function of brain and heart \rightarrow prolongation of diving period

- Reaction on loss of blood
- bleeding \rightarrow hypovolemia $\rightarrow \downarrow$ venous return $\rightarrow \downarrow$ SV $\rightarrow \downarrow$ CO $\rightarrow \downarrow$ BP (even shock)

- Reaction on loss of blood sudden
- The resulting state is dependent on the amount of lost blood and on the velocity of loss of blood!
- loss of 10 % of the blood volume (~ in a blood donor):
- \rightarrow slightly and transiently \downarrow BP
- loss of 20-30 % of the blood volume :
- $\rightarrow \downarrow$ mean BP to about 60-80 mmHg
- loss of 30-40 % of the blood volume :
- → ↓ mean BP to about 50-67.5 mmHg → shock, may shift into an irreversible state

- Reaction on loss of blood sudden
- bleeding \rightarrow hypovolemia \rightarrow \downarrow venous return \rightarrow \downarrow SV \rightarrow \downarrow CO \rightarrow \downarrow BP (even shock)
- Instantaneous reaction (seconds till minutes)
- Reaction within 5 60 min
- Reaction within hours till days

- Reaction on loss of blood sudden
- Instantaneous reaction on \downarrow BP (seconds till minutes)
- \$\stimulation of baroreceptors
- limited tissue perfusion due to \uparrow PR \rightarrow metabolic acidosis
- limited renal perfusion due to ↑ PR (v. eff. > v. aff.) → ↑ FF but, anyway, ↓ urine formation → retention of Na⁺ in body (prospectively also of waste nitrogen products – uremia!)
- RAS activation (angiotensine II, aldosteron) + 1 secretion of ADH, thirst

- Reaction on loss of blood sudden
- Reaction on \downarrow BP within 5 60 min
- ↓ capillary hydrostatic pressure → oncotic pressure > hydrostatic pressure → reabsorption of fluids from the interstitial tissue into capillaries → ↑ volume of intravasal fluid ("internal transfusion"); consequences!
- The so far described reactions provide the sufficient blood flow through brain and myocardium.

- Reaction on loss of blood sudden
- Reaction on \downarrow BP within hours till days (even weeks)
- restoration of content of salt and water in the organism
- restoration of plasmatic proteins including albumin
- stimulation of erythropoiesis in the bone marrow

- Reaction on loss of blood sudden
- irreversible state (shock) may be caused by:
- primary heart failure
- serious tissue hypoxia
- in both cases circulus vitiosus!

