Physiology of the Heart Conduction System Cardiac Cellular Electrophysiology Electromechanical Coupling

Assoc. Prof. MUDr. Markéta Bébarová, PhD

Department of Physiology Faculty of Medicine Masaryk University

This presentation includes only the most important terms and facts. Its content by itself is not a sufficient source of information required to pass the Physiology exam.

Roles of the Cardiovascular System

- primary role distribution of dissolved gases and other nutrients
- several secondary roles, for example:
 - fast chemical signalling to the cells (circulating hormones)
 - thermoregulation (delivery of heat from the core to the surface of the body)
 - immune reaction

- roles of the heart:
 - primary role pumping of blood
 - endocrinne organ (natriuretic peptides)

TWO PUMPS INTERCONNECTED IN SERIES

Two Main Phases of the Cardiac Cycle

ONE WAY VALVES	DIASTOLE	SYSTOLE
ATRIOVENTRICULAR (mitral and tricuspid)	open	closed
SEMILUNAR (aortal and pulmonary)	closed	open

Two Major Types of Cardiac Cells

 cardiomyocytes of the working myocardium - specialized for contraction (atrial and ventricular myocytes)

FUNCTIONAL SYNCYTIUM

sarcomere

- mechanical connections
- electrical connections gap junctions

Two Major Types of Cardiac Cells

- cardiomyocytes of the working myocardium specialized for contraction (atrial and ventricular myocytes)
- cardiomyocytes of the cardiac conduction system specialized for:
 - automatic excitation (pacemaker activity)
 - conduction of excitation

The cardiac conduction system ensures:

- generation of automatic electrical activity of the heart (pacemaker activity) that initiates its mechanical activity
- optimal timing of the mechanical activity of the heart as a pump

SINOATRIAL (SA) NODE
 PRIMARY pacemaker (60-100 impulses/min)

SA node

TWO TYPES of the SA-nodal cells

SICK SINUS SYNDROME

- pacemaker P cells are impaired, activity is slowed or stopped
- transmission of excitation from P cells to the atrial cells is reduced or interrupted

- SINOATRIAL (SA) NODE
 PRIMARY pacemaker (60-100 impulses/min)
- INTERNODAL PREFERENTIAL PATHWAYS
- ATRIOVENTRICULAR (AV) NODE
 SECONDARY pacemaker (40-55 impulses/min)

AV node

- SOLE PATHWAY FOR PROPAGATION OF EXCITATION FROM ATRIA TO VENTRICLES (NH zone merges into the bundle of His)
- DELAY IN PROPAGATION OF EXCITATION, ~100 ms (important for adequate timing of atrial and ventricular contractions)
- SUBSTITUTIVE (SECONDARY) PACEMAKER (40-55 impulses/min; importance in the case of sick sinus syndrome)
- FILTER OF SUPRAVENTRICULAR TACHYARRHYTHMIAS atrial excitations are transmitted to the ventricles only up to the limited frequency 180-200 excitations/min (the heart function as a pump is preserved)

•	SINOATRIAL (SA) NODE PRIMARY pacemaker (60-100 impulses/min)	0.05 m/s
•	INTERNODAL PREFERENTIAL PATHWAYS	1 m/s
•	ATRIOVENTRICULAR (AV) NODE SECONDARY pacemaker (40-55 impulses/min)	0.05 m/s
•	BUNDLE OF HIS BUNDLE BRANCHES (LEFT AND RIGHT)	1 m/s 1 m/s
•	PURKINJE FIBRES TERCIARY pacemaker (25-40 impulses/min)	4 m/s

Conduction velocity in atrial and ventricular muscle: 1 m/s

Ionic Channels

Movement of ions through the open channels down their electrochemical (concentration + electrical) gradients

Mechanism of the initial fast depolarization (phase 0)

depolarizing currents

 \uparrow depolarization \Rightarrow \uparrow conductance of Na⁺ (Ca²⁺) channels \Rightarrow \uparrow I_{Na} (I_{Ca})

(directly proportionate to the fraction of Na^+ (Ca^{2+}) channels in the open state)

Refractory Period – Suppression of Excitability

protection of the heart against:

- retrograde propagation of excitation (reentry)
- tetanic contraction at higher heart rate

Refractory Period – Suppression of Excitability

Pacemaker Activity - Mechanism

Pacemaker Activity - Mechanism

FACTORS DETERMINING THE HEART RATE:

- 1) maximal diastolic voltage
- 2) steepness of diastolic depolarization
- 3) threshold voltage for activation of I_{Ca-L}

Pacemaker Activity - Mechanism

COMPLEX PROCESS resulting from an INTERPLAY between

- REPOLARIZING CURRENTS, namely I_K (including I_{K,Ach})
- DEPOLARIZING CURRENTS, namely I_f, I_{Ca-T}, and I_{NaCa}

Pacemaker Activity - Mechanism

SYMPATHETIC STIMULATION

- \uparrow cAMP $\longrightarrow \uparrow$ I_{f} and $I_{Ca-T} \longrightarrow \uparrow$ rate of diastolic depolarization
 - → ↓ threshold voltage for activation of I_{Ca-L} (↑ excitability)

Pacemaker Activity - Mechanism

PARASYMPATHETIC STIMULATION

• \downarrow cAMP $\longrightarrow \downarrow I_{f}$ and $I_{Ca-T} \longrightarrow \downarrow$ rate of diastolic depolarization $\longrightarrow \uparrow$ threshold voltage for activation of I_{Ca-L} (\downarrow excitability)

activation of $I_{K,Ach} \longrightarrow \downarrow$ maximal diastolic voltage

SPREADING OF EXCITATION IN THE HEART

Excitation-Contraction Coupling

Excitation-Contraction Coupling in Cardiomyocytes

Molecular Mechanism of Contraction

FORMATION OF CROSS BRIDGES BETWEEN ACTIN AND MYOSIN FILAMENTS

MECHANISM IDENTICAL IN SKELETAL AND CARDIAC MUSCLE CELLS

Molecular Mechanism of Contraction

TROPONIN-TROPOMYOSIN COMPLEX

Molecular Mechanism of Contraction

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Molecular Mechanism of Contraction

********		/
******		*****************
*****		*****
	_	
*****		******
*****		*****

L band	A band	L band

(b)

