Regional Circulations (pulmonary, skin, muscle, cerebral, splanchnic, renal, fetal)

Assoc. Prof. MUDr. Markéta Bébarová, Ph.D.

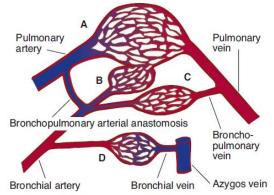
Department of Physiology, Faculty of Medicine, Masaryk University

This presentation includes only the most important terms and facts. Its content by itself is not a sufficient source of information required to pass the Physiology exam.

Regional Circulation

- an organ may be supplied by two blood inflows:
 - the nutrient circulation
 - the functional circulation
- various ways of anatomical and functional adaptation of an organ-specific circulation to provide the optimal function of the organ
- varying impact of particular ways of regulation of the blood flow (~ vasal tone) in various organs

- Blood flow through lungs is virtually equal to the blood flow through all other organs.
- Functions:
 - provide the gas exchange
 - blood reservoir
 - mechanical, chemical and immunological filter



- Arteries (differences compared to the arteries in the systemic circulation)
 - bigger total cross-section of all pulmonary arteries
 - smaller thickness of the vessel walls
 - high compliance
- Capillaries
 - wide, abundant anastomoses form a net surrounding alveoles
 - time of passage, area of perfused capillaries at rest and intensive exertion
- Veins
 - high compliance (blood reservoir, ortopnoe)

Blood pressure in pulmonary circulation

- Nutrient circulation
 - physiological arteriovenous shunt

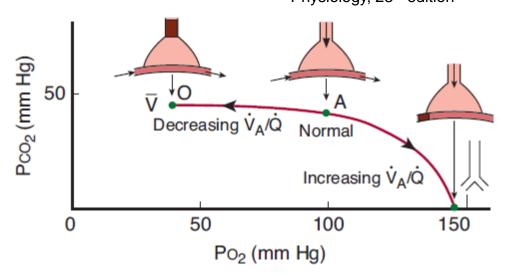
Ganong's Review of Medical Physiology, 23rd edition

Lymphatic vessels

- fast transport of proteins and various particles from the peribronchial and perivascular tissue $\rightarrow \downarrow$ formation of the tissue fluid ~ prevention of the pulmonary edema

No filtration in pulmonary capillaries physiologically!

- 1. pressures in intersticium and pulmonary capillaries
- 2. permeability of pulmonary capillaries



- Regulation of blood flow in lungs
 - A. Systemic mechanisms
 - 1) Neural regulation (sympathicus, parasympathicus)
 - 2) Humoral regulation (circulating substances)
 - B. Local mechanisms
 - chemical (metabolic) autoregulation
 opposite reaction compared to systemic circulation (vasoconstriction)
 - C. Passive factors
 - cardiac output
 - gravity (blood distribution in lungs)

Ratio of ventilation and perfusion

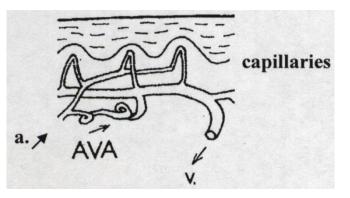
- kept constant (local metabolic autoregulation) non-ventilated alveolus - vasoconstriction
 non-perfused alveolus - bronchoconstriction
 Ganong's Review of Medical Physiology, 23rd edition
- decreased ratio most often cause of hypoxic hypoxia in clinical practise (right-left shunt) → ↓ arterial blood saturation with O₂

 content of CO₂ usually not changed (compensatory hyperventilation in other alveoles)

• Skin blood flow considerably varies (0.02-5 I/min).

Function:

- Metabolic demands of skin small (decubitus)
- Maintenance of body temperature


poikilothermic tissue

Arteriovenous anastomoses

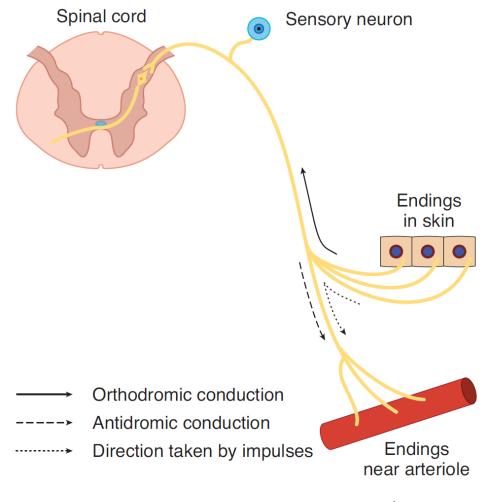
- Protection against environment
- Maintenance of mean blood pressure

- Arteriovenous anastomoses
 - convoluted muscle vessels directly connecting arteriols and venules (low-resistance shunt)

Honzíková N - Poznámky k přednáškám z fysiologie (1992)

 regulated by sympathetic vasoconstrictive nerve fibers

- Regulation of skin blood flow:
 - Sympathetic nerve fibers
 - Humoral local factors (histamine, serotonine)



- Reaction on a temperature change:
 - 1) direct impact of a temperature change on the vessel tone
 - 2) excitation of skin thermoreceptors
 - 3) excitation of thermoreceptors in brain

reflex modulation of sympathetic vasoconstrictive activity

• Axon reflex

Ganong's Review of Medical Physiology, 23rd edition.

Muscle Circulation

Muscle Circulation

• Function:

1) Blood supply of muscles

the resting blood flow – 18% of the cardiac output vs. even 90% at intensive exertion (the local blood flow \uparrow even 20times)

2) Regulation of blood pressure

skeletal muscles – 40% of the body weight \rightarrow resistance of the muscle bloodstream has a high impact on the total peripheral resistance

 The blood flow during muscle activity is intermittent, during the tetanic contraction even zero (oxygen debt).

Muscle Circulation

- Regulation of the muscle blood flow:
 - 1) Neural regulation

dominates at rest (vasocontriction through sympathicus - big dilation reserve)

2) Local chemical regulation

dominates at physical exertion (metabolic vasodilation)

almost linear increase of the flow with increasing metabolic activity

increased blood flow + increased O₂ extraction

 \uparrow capillary pressure + \uparrow osmolarity \rightarrow \uparrow filtration \rightarrow edema in active muscles

TABLE 34–1Resting blood flow and O_2 consumption of various organs in a 63-kg adult manwith a mean arterial blood pressure of 90 mm Hg and an O_2 consumption of 250 mL/min.

		Blood Flow		Arteriovenous	Oxygen Consumption		Resistance (R units) ^a		Percentage of Total	
Region	Mass (kg)	mL/min	mL/100 g/min	 Oxygen Difference (mL/L) 	mL/min	mL/100 g/min	Absolute	per kg	Cardiac Output	Oxygen Consumption
Liver	2.6	1500	57.7	34	51	2.0	3.6	9.4	27.8	20.4
Kidneys	0.3	1260	420.0	14	18	6.0	4.3	1.3	23.3	7.2
Brain	1.4	750	54.0	62	46	3.3	7.2	10.1	13.9	18.4
Skin	3.6	462	12.8	25	12	0.3	11.7	42.1	8.6	4.8
Skeletal muscle	31.0	840	2.7	60	50	0.2	6.4	198.4	15.6	20.0
Heart muscle	0.3	250	84.0	114	29	9.7	21.4	6.4	4.7	11.6
Rest of body	23.8	336	1.4	129	44	0.2	16.1	383.2	6.2	17.6
Whole body	63.0	5400	8.6	46	250	0.4	1.0	63.0	100.0	100.0

^aR units are pressure (mm Hg) divided by blood flow (mL/s).

Reproduced with permission from Bard P (editor): *Medical Physiology*, 11th ed. Mosby, 1961.

Ganong's Review of Medical Physiology, 23rd edition

- provides:
 - 1) constant sufficient blood supply

(black-out during several seconds of the brain ischemia, irreversible damage during several minutes)

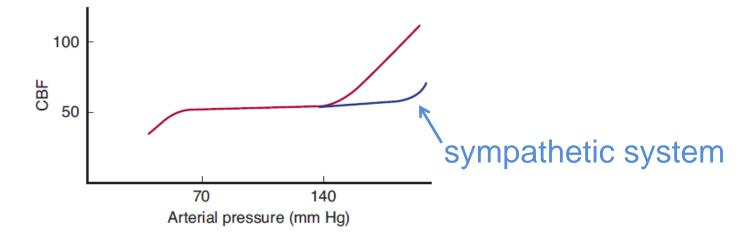
2) dynamic blood redistribution

(metabolic hyperaemia)

- Anatomical specialities of cerebral circulation:
 - *circulus arteriosus cerebri* (interconnection of main cerebral arteries by anastomoses)
 - 2) very high density of capillaries

(3000 – 4000 capillaries / mm² od the grey matter)

~ minimalization of diffuse distance for gases and other substances


3) very short arteriols

(almost 1/2 of the vasal resistance falls on arteries which are abundantly innervated)

- Functional adaptation of cerebral circulation:
 - 1) high and stable blood flow
 - 2) high O₂ extraction
 - 3) well developed autoregulation (myogenic and metabolic)
 - 4) high reactivity on changes of CO₂ concentration
 - 5) local vs. total hypoxia
 - 6) innervation

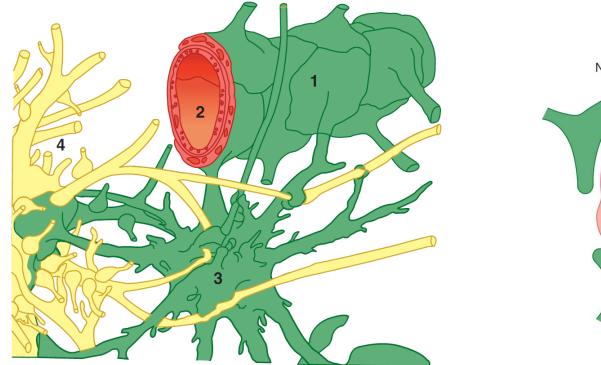
Ganong's Review of Medical Physiology, 23rd edition.

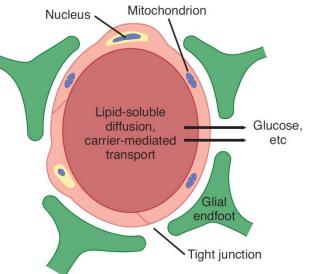
- Special physical conditions of cerebral circulation:
 - 1) solid cover of brain by skull

Monro-Kelli theory

 \rightarrow flow may be increased only by acceleration of the blood flow, not by an increase of capacity of the bloodstream

 \rightarrow Cushing reflex


2) gravity


orthostatic reaction (postural syncope)

Blood-brain barrier

cerebral capillaries - tight inter-endothelial connections

Ganong's Review of Medical Physiology, 23rd edition

Blood-brain barrier

By free diffusion:

 \rightarrow lipophilic substances (O₂, CO₂, xenon; unbound forms of steroid hormones)

→ water (aquaporins; osmolality of blood and cerebrospinal fluid is identical!)

→ glucose – the main source of energy for neurons (free diffusion would be slow – accelerated by GLUT)

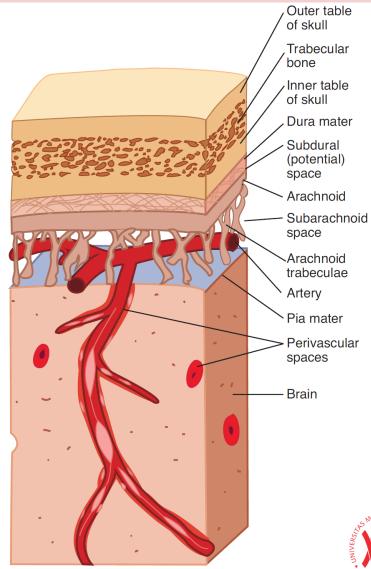
By transcellular transport (regulated):

 \rightarrow ions (e.g. H⁺, HCO³⁻ vs. CO₂ !)

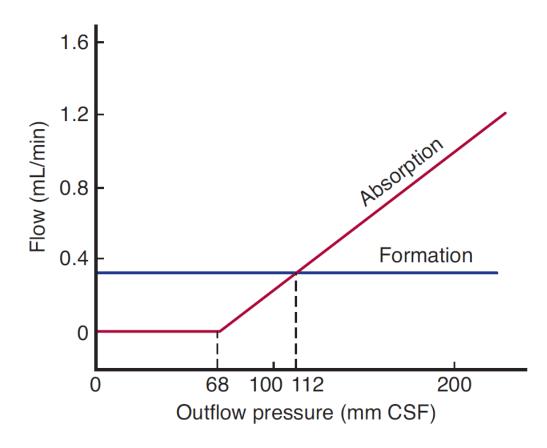
 \rightarrow transporters for thyroid hormones, some organic acids, choline, precursors of nucleic acids, aminoacids, ...

- Blood-brain barrier
- Functions:
 - maintenance of constant composition of the neuron environment
 - protection of brain against endogenic and exogenic toxins
 - prevention of loss of neurotransmitters to the bloodstream

Cerebrospinal fluid


- localization
- composition
- volume ~150 ml, rate of production ~550 ml/d (exchange 3.7times/day)

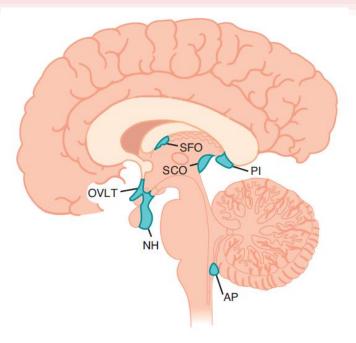
Sul	bstance	CSF	Plasma	Ratio CSF/Plasma
Na ⁺	(meq/kg H ₂ O)	147.0	150.0	0.98
K ⁺	(meq/kg H ₂ O)	2.9	4.6	0.62
Mg^{2+}	(meq/kg H ₂ O)	2.2	1.6	1.39
Ca ²⁺	(meq/kg H ₂ O)	2.3	4.7	0.49
CI⁻	(meq/kg H ₂ O)	113.0	99.0	1.14
HCO3-	(meq/L)	25.1	24.8	1.01
Pco ₂	(mm Hg)	50.2	39.5	1.28
рН		7.33	7.40	
Osmolality	(mosm/kg H ₂ O)	289.0	289.0	1.00
Protein	(mg/dL)	20.0	6000.0	0.003
Glucose	(mg/dL)	64.0	100.0	0.64
Inorganic P	(mg/dL)	3.4	4.7	0.73
Urea	(mg/dL)	12.0	15.0	0.80
Creatinine	(mg/dL)	1.5	1.2	1.25
Uric acid	(mg/dL)	1.5	5.0	0.30
Cholesterol	(mg/dL)	0.2	175.0	0.001


Ganong's Review of Medical Physiology, 23rd edition

- Cerebrospinal fluid Function:
 - protection of brain (together with menanges)

Ganong's Review of Medical Physiology, 23rd edition

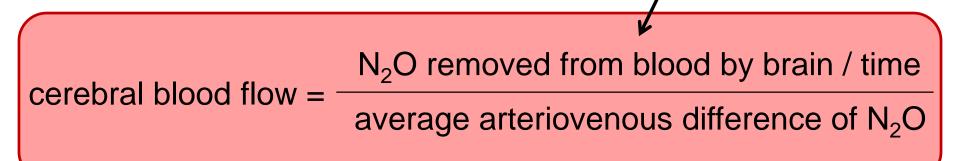
Cerebrospinal fluid



Ganong's Review of Medical Physiology, 23rd edition

- Paraventricular organs

 brain regions where the
 blood-brain barrier is missing
 (fenestrated capillaries)
 - secretion of polypeptides (oxytocin, vasopressin, ...),
 - chemoreceptive zones (AP)
 - osmoreceptive zones (OVLT)



Ganong's Review of Medical Physiology, 23rd edition

- Measurement of cerebral blood flow Kety method
 - Fick principle, method of indicatory gas
 - nitrous oxide N₂O

 N_2O concentration in the venous blood

\rightarrow average blood flow through all perfused regions!

• Measurement of cerebral blood flow - regional

PET (positron emission tomography) fMRI (functional magnetic resonance)

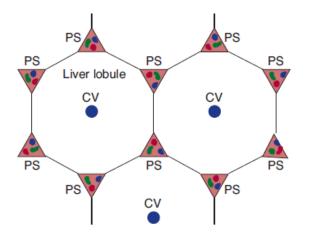
Splanchnic Circulation

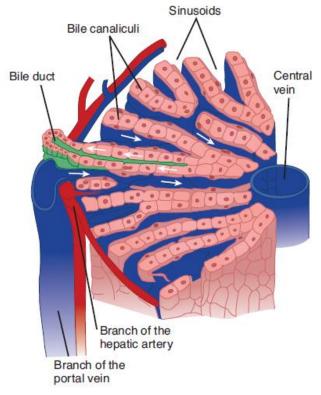
Splanchnic Circulation

- blood flow through GIT including liver and pancreas
- blood flow through spleen
- Main functional roles:
 - metabolic function of GIT
 - blood reservoir
 - special (*e.g.* spleen removal and degradation of old/altered erythrocytes)

- Blood reservoir
- at rest ~20% of the total blood volume
- rich innervation with sympathetic vasoconstrictive fibers - α rec. (even 350 ml of the blood emptied into the systemic circulation during several minutes!)

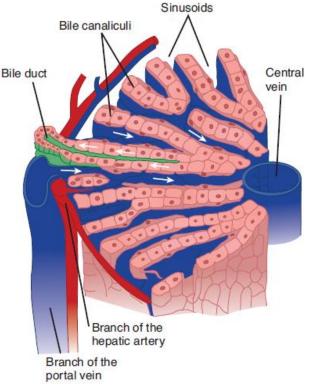
- Intestinal circulation (a. coeliaca, a. mesenterica superior and inferior)
- submucous plexus, branches enter musculature and intestinal villi
- countercurrent exchange of substances


- Intestinal circulation (a. coeliaca, a. mesenterica superior and inferior)
- Regulation of blood flow:
 - metabolic vasodilation (mediators: adenosine, ↓
 [K⁺]_e and ↑ osmolarity)
 - neural regulation almost exclusively sympathicus, $\alpha > \beta$ rec. \rightarrow vasoconstriction



- Hepatic circulation (v. portae, a. hepatica)
- 25% of the cardiac output (~1.5 l/min)
 - $\frac{3}{4}$ v. portae, $\frac{1}{4}$ a. hepatica Regarding O₂ supply, the ratio is opposite!
- portal circulation
 - 2 capillary bloodstreams in series (intestinal villi, liver sinusoids)
 - $\downarrow O_2$ content $\rightarrow a$. hepatica represents the nutritive hepatic circulation

- Hepatic circulation (v. portae, a. hepatica)
- functional unit acinus



Ganong's Review of Medical Physiology, 23rd edition

- Hepatic circulation (v. portae, a. hepatica)
- pressures:
 - a. hepatica:
 - v. hepatica:
 - v. portae:
 - sinusoids:

90 mmHg 5 mmHg 10 mmHg 2.25 mmHg

Ganong's Review of Medical Physiology, 23rd edition

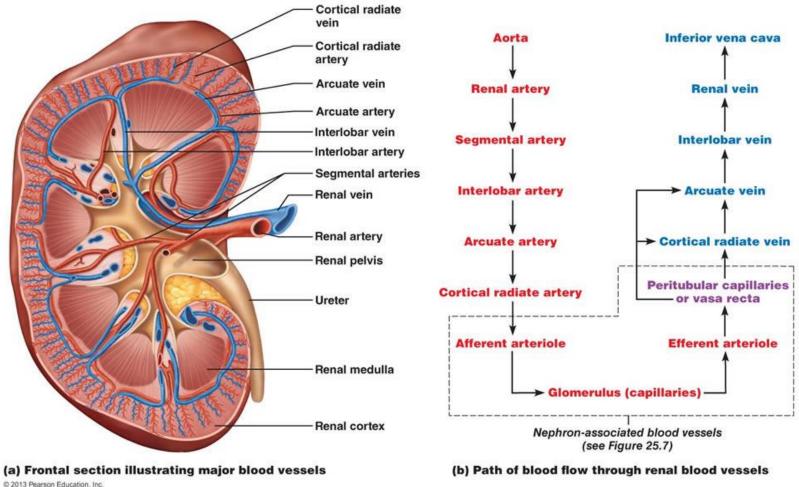
- Hepatic circulation (v. portae, a. hepatica)
- inverse regulation of blood flow in *v. portae* and *a. hepatica*:
 - <u>between meals</u>: many sinusoids collapsed, flow in *v*. *portae* low, adenosine formed constantly and washed less \rightarrow dilation of terminal hepatic arterioles
 - <u>after a meal:</u> flow in *v. portae* ↑, adenosine washed faster → constriction of hepatic arterioles, higher flow in *v. portae* opens so far collapsed sinusoids
- increased hepatic pressure (cirhosis) \rightarrow ascites

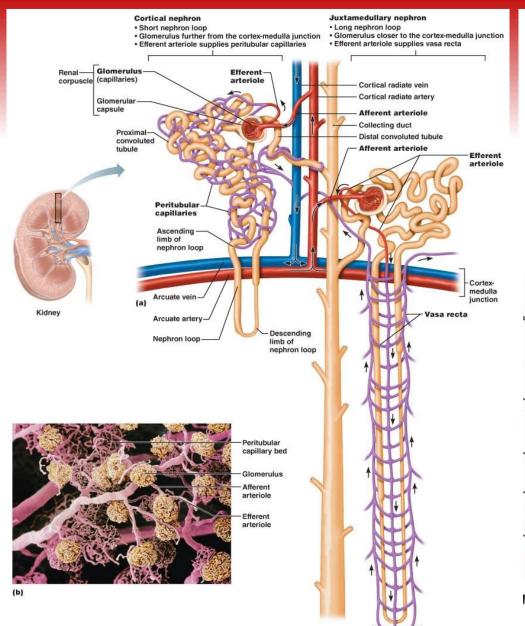
- Hepatic circulation (v. portae, a. hepatica)
- <u>Regulation of blood flow</u>:
 - neural: symp. vasoconstrictive fibers α rec.
 - metabolic: adenosine \rightarrow vasodilation
 - passive: ↑ BP → passive dilation of portal vein radicles → ↑ liver blood amount

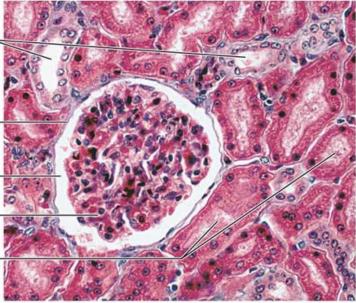
congestive heart failure

diffuse noradrenergic discharge due to \downarrow BP

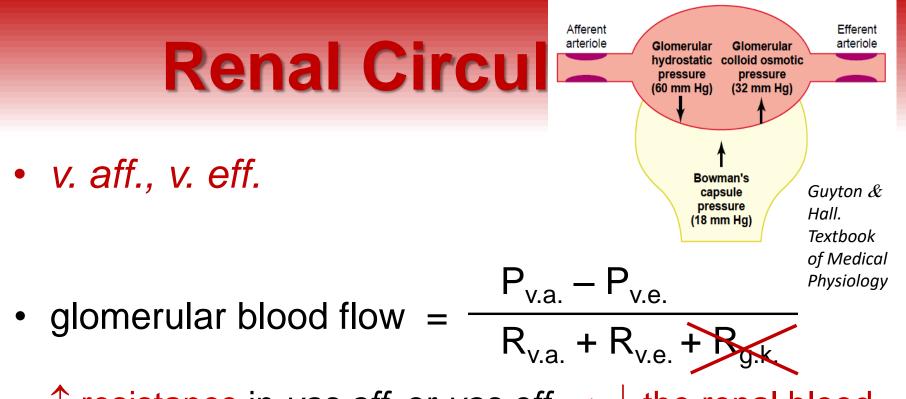
• sufficient O_2 supply is essential for liver function! flow $\rightarrow \uparrow O_2$ extraction


- Hepatic circulation (v. portae, a. hepatica)
- hepatic lymphatic circulation
 - formation of almost ³/₄ of the body lymph
 - lymph rich on proteins (many plasmatic proteins are formed in hepatocytes + proteins from plasma due to the high permeability of sinusoids)


- main functions of kidneys
- High filtration rate requires an adequate blood supply!
 - kidneys form only ~0.4 % of the body weight
 - blood flow 1.2 l/min, ~25% of cardiac output
- distribution of blood flow is irregular, the most flows through cortex (glomeruli – filtration)



http://classes.midlandstech.edu/carterp/Courses/bio211/chap25/chap25.htm



renal cortical tissue (180×)

© 2013 Pearson Education, Inc.

http://classes.midlandstech.edu/carterp/Courses/bio211/chap25/chap25.htm

- ↑ resistance in vas aff. or vas eff. → ↓ the renal blood flow (if the arterial pressure is stable)
- regulate the glomerular filtration pressure:

constriction of *vas aff*. $\rightarrow \downarrow$ glomerular pressure $\rightarrow \downarrow$ filtration constriction of *vas eff*. $\rightarrow \uparrow$ glomerular pressure $\rightarrow \uparrow$ filtration

- Regulation of renal blood flow:
 - 1) Myogenic autoregulation
 - 2) Neural regulation
 - 3) Humoral regulation

- Regulation of renal blood flow:
 - 1) Myogenic autoregulation
 - dominates
 - provides stable renal filtration activity by maintaining stable blood flow at varying systemic blood pressure

- Regulation of renal blood flow:
 - 2) Neural regulation
 - conformed to demands of systemic circulation
 - sympathetic system norepinephrine

light exertion/upright body posture $\rightarrow \uparrow$ sympathetic tone $\rightarrow \uparrow$ tone of *v. aff.* and *eff.* $\rightarrow \downarrow$ renal blood flow but without \downarrow GFR (\uparrow FF)

higher \uparrow of sympathetic tone - during anesthesia and pain - GFR may already \downarrow

- Regulation of renal blood flow:
- 3) Humoral Regulation
 - contribute to regulation of systemic BP and regulation of body fluids
 - NE, E (from the adrenal medulla) constriction of aff. and eff. arterioles → ↓ renal blood flow and GFR

(small impact with the exception of serious conditions, for example serious bleeding)

- Regulation of renal blood flow:
- 3) Humoral Regulation
 - contribute to regulation of systemic BP and regulation of body fluids
 - endothelin

constriction of aff. and eff. arterioles $\rightarrow \downarrow$ renal blood flow and GFR

released locally from the impaired endothel (physiological impact - hemostasis; pathologically increased levels at the toxemia of pregnancy, acute renal failure, chronic uremia)

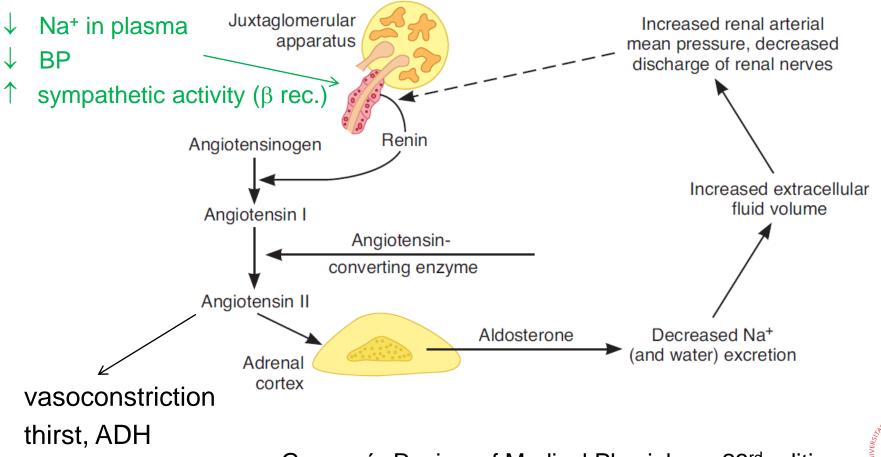
- Regulation of renal blood flow:
- 3) Humoral Regulation
 - contribute to regulation of systemic BP and regulation of body fluids
 - **NO**

continual basal production \rightarrow vasodilation \rightarrow stable renal blood flow and GFR

- prostanglandins (PGE₂, PGI₂), bradykinin

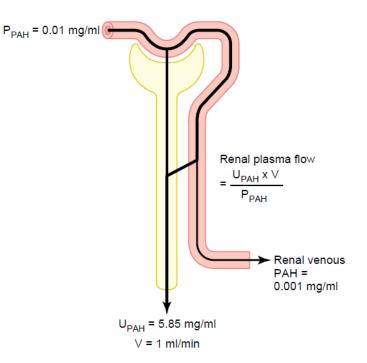
 \rightarrow vasodilation

minor impact under physiological conditions non-steroidal anti-inflammatory agents during stress!



- Regulation of renal blood flow:
 - 3) Humoral regulation
 - contribute to regulation of systemic BP and regulation of body fluids
 - Renin-angiotensine system

Renin-angiotensine system



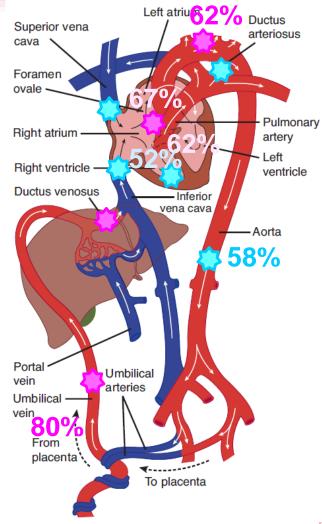
Determination of renal plasma flow velocity (RPF)

Clearance of a substance which is fully cleared from plasma in glomerulotubular apparatus.

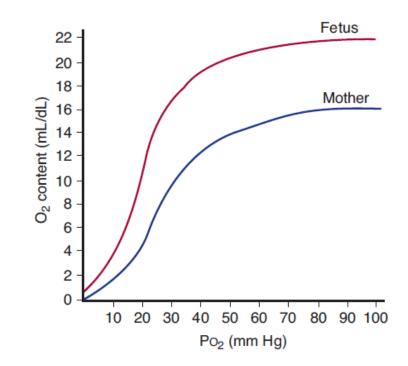
PAH (paraaminohippuric acid) cleared by 90%

$$RPF = \frac{5.85 \times 1 \text{ mg/min}}{0.01 \text{ mg/ml}} = 585 \text{ ml/min}$$

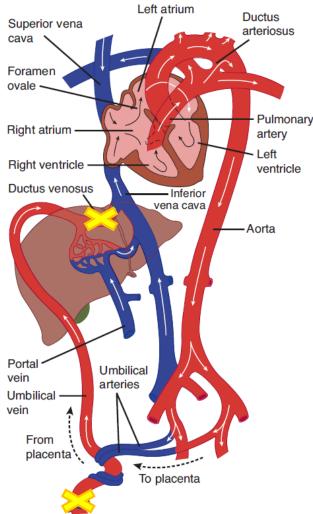
Guyton & Hall. Textbook of Medical Physiology

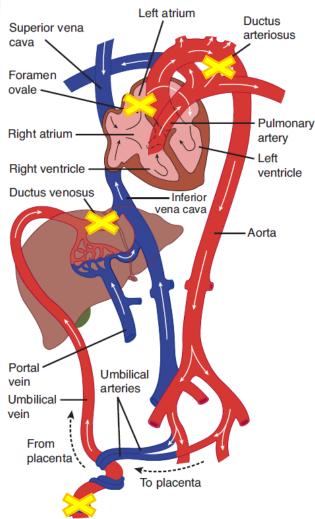

Correction to the extraction ratio of PAH (E_{PAH}):

$$E_{PAH} = \frac{P_{PAH} - V_{PAH}}{P_{PAH}} = 0.9 \longrightarrow RPF = \frac{585 \text{ ml/min}}{0.9} = 650 \text{ ml/min}$$



- placenta, umbilical vein
- liver, *ductus venosus*
- crista dividens, foramen ovale
- blood supply of the head and upper limbs
- v. cava superior and inferior
- the right ventricle
- ductus arteriosus
- aorta the blood supply of the lower part of body + 60% of the cardiac output is directed to placenta


- fetal haemoglobin
- short-period hypoxia
- longer hypoxia
- thick muscle wall of umbilical vessels


- Changes after birth
- Closure of umbilical vein

 - contraction of musculature of ductus venosus and its closure
- The first inspiration (due to asphyxia and cooling of the body)
 - ↓ resistance of the lung bloodstream
 - much more blood into lungs

- Changes after birth
- Decrease of pressure in right atrium and its increase in left atrium due to:
 - filling of left atrium by the blood from lungs
 - ↓ venous return to right atrium due to closure of umbilical vein
 - left ventricle works against ↑
 pressure in aorta
- Closure of formanen ovale
- Closure of ductus arteriosus

