# **Regulation of Blood Flow**

## Assoc. Prof. MUDr. Markéta Bébarová, Ph.D.

#### Dept. of Physiology, Faculty of Medicine, Masaryk University



This presentation includes only the most important terms and facts. Its content by itself is not a sufficient source of information required to pass the Physiology exam.

# **Definition of Blood Flow**

mathematical formulation – analogy with the electric current

Ohm's law  $I = U / R \longrightarrow Q = \Delta P / R$ 

- Q blood flow
- $\Delta \mathsf{P}$  difference of pressure at the beginning and at the end of a vessel
- R resistance of the vessel (peripheral resistance)

# **Definition of Blood Flow**



- r radius of the vessel
- η viscosity of the blood
- I length of the vessel

This formula applies to the steady laminar flow in a rigid tube!

Blood viscosity is not constant, plasma skimming, turbulent flow, elastic vessels!

## **Definition of Blood Flow**



r radius of the vessel
η viscosity of the blood
l length of the vessel

### Poiseuille – Hagen formula

$$Q = \Delta P \cdot \pi r^4 / 8\eta I$$



- A. with a cannula inserted into a vessel
- B. without direct contact with the blood flow
  - 1. Electrical Induction Principle
  - 2. Doppler Effect
  - 3. Plethysmography
  - 4. Fick Principle

#### 1. Electrical Induction Principle

the electromagnetic flowmeter



Guyton and Hall. Textbook of Medical Physiology, 11<sup>th</sup> edition

- the generated electromotive force is proportional to the velocity of blood flow
- ✤ can detect changes in the velocity <0.01 s → recording of both steady blood flow and its pulsatile changes</p>

#### 2. Doppler Effect

- the ultrasonic Doppler flowmeter; most common
- ultrasonic waves of a known wave length (frequency)
- waves reflect from the red and white blood cells → a change (↑) of the wave length (↓ frequency)
- reflected waves are picked up by a sensor
- change of the wave length (frequency) is proportinal to the velocity of blood flow



both steady blood flow and its pulsatile changes can be measured

#### 3. Plethysmography

- usually as the venous occlusion plethysmography
- can be used on limbs
- venous drainage of the limb is stopped (e.g. with an arm cuff)
- increasing volume of the limb is lineary proportional to the arterial inflow of blood



Guyton and Hall. Textbook of Medical Physiology, 11th edition

#### 3. Plethysmography

- usually as the venous occlusion plethysmography
- can be used on limbs
- venous drainage of the limb is stopped (e.g. with an arm cuff)
- increasing volume of the limb is lineary proportional to the arterial inflow of blood



http://schueler.ws/?page\_id=21

- 4. Fick Principle Direct Fick Method
- blood flowing from the right heart to the lungs about 150 ml O<sub>2</sub> / 1 l
- blood flowing from the lungs to the left heart about 200 ml  $O_2$  / 1 l

The blood catches 50 ml  $O_2$  / 1 l during passage through the lungs.

The total O<sub>2</sub> consumption is 250 ml / 1 min.

$$CO = \frac{\frac{250 \text{ ml } O_2 / \text{min}}{50 \text{ ml } O_2 / \text{l}}}{50 \text{ ml } O_2 / \text{l}} = 5 \text{ l} / \text{min}$$



 $Q = \frac{A / time}{A / diff}$ 

Guyton and Hall. Textbook of Medical Physiology, 11<sup>th</sup> edition

#### 4. Fick Principle – Method of Indicatory Gas

- to determine the instantaneous blood flow through a specific tissue
- for example the cerebral or coronary blood flow using inhaled nitrous oxide N<sub>2</sub>O Kety method



#### 4. Fick Principle - Indicator Dilution Technique

- known amount of an indicator (dye or radioactive isotope) is injected into a peripheral (an arm) vein (A, [mg])
- concentration of the indicator in serial samples of the arterial blood is determined
- estimation of the averaged concentration of the indicator in the arterial blood after a single circulation (C, [mg/ml])

$$CO = \frac{A}{C (t_2 - t_1)} \quad [mg]$$
[mg.ml<sup>-1</sup>.s]

thermodilution



Ganong's Review of Medical Physiology, 23<sup>rd</sup> edition.

## **Regulation of Blood Flow**

# $Q = \Delta P \cdot \pi r^4 / 8\eta l$

#### **Resting Tone**

- tonic activity of vasocontrictive sympathetic fibres
- a role might play also: myogenic response of vessels to the blood pressure (later), high concentration of O<sub>2</sub> in the arterial blood, Ca<sup>2+</sup>

#### **Basal Tone**

in response to denervation; due to spontaneous depolarizations of the vascular smooth muscles

#### Regulation Local <u>Sys</u>temic





Despopoulos, Color Atlas of Physiology © 2003 Thieme

## A. Acute

seconds to minutes, but incomplete (about <sup>3</sup>/<sub>4</sub> of the desired effect)

- 1. Metabolic Autoregulation
- 2. Myogenic Autoregulation
- 3. Regulation Mediated by Endothelium

## **B.** Chronic

hours, days to weeks, even months

- **Metabolic Autoregulation**
- insufficient blood flow  $< \uparrow$  metabolic demands of a tissue  $\downarrow$  or stopped blood supply
  - → ↑ concentration of metabolites,  $\downarrow$  pH, ↑ osmolarity in the interstitium, ↑ tissue temperature;  $\downarrow$  pO<sub>2</sub>, nutrients

#### vasodilatation

Preferred to the systemic regulation in case of hypoxia (to preserve the adequate tissue perfusion).

It plays the key role in e.g. brain, heart and skeletal muscles.

**Metabolic Autoregulation** 

active hyperemia reactive hyperemia

## Myogenic Autoregulation (Bayliss effect)

## f blood pressure

 $Q = \Delta P / R$ 

 $\longrightarrow$   $\uparrow$  blood flow and  $\uparrow$  tension in the vascular wall

Law of Laplace

 $T = P \cdot r$ 

return of the blood flow back on the original level

It plays an important role in the brain and kidneys.

Regulation Mediated by Endothelium

endothelial-derived relaxing factor (EDRF) – NO

#### $\rightarrow$ vasodilatation

- synthesized in the endothelial cells of arteriols and small arteries due to the shear stress induced by the flowing blood
- synthesis stimulated by the products of thrombocyte aggregation and also by many primary vasoconstrictive substances





Despopoulos, Color Atlas of Physiology © 2003 Thieme

## Regulation Mediated by Endothelium endothelial-derived relaxing factor (EDRF) – NO



Guyton and Hall. Textbook of Medical Physiology, 11<sup>th</sup> edition

## Regulation Mediated by Endothelium

#### prostacyclin

- synthesized in the endothelial cells from the arachidonic acid
- inhibition of thrombocyte aggregation and vasodilation

#### thromboxane A<sub>2</sub>

- synthesized from the arachidonic acid by thrombocytes
- support of thrombocyte aggregation and vasoconstriction

A balance between them is crucial for formation of the localized clot and preservation of the blood flow.

# Regulation Mediated by Endothelium endothelins

- polypeptides synthesized by endothelial cells (ET-1, ET-2, ET-3)
- 2 endothelin receptors:

 $ET_A$  – specific for ET-1, in many tissue vessels,  $\rightarrow$  vasoconstriction  $ET_B$  – ET-1 to ET-3, function?

- ET-1 one of the most potent vasoconstrictive substances
- the exact physiological role not known
- restricts bleeding, play a role in closing *ductus arteriosus* at birth

#### Serotonin (5-OH tryptamine)

#### vasoconstrictive effect

- in a damaged tissue
- direct local effect
- released from thrombocytes

#### vasodilatory effect

- in an undamaged tissue
- through increased activity of NO synthase

- Other mechanisms
- ✤ temperature, …
- damaged vessels

specialized tissues (kidneys, brain, etc.)

## A. Acute

seconds to minutes, but incomplete (about <sup>3</sup>/<sub>4</sub> of the desired effect)

- 1. Metabolic Autoregulation
- 2. Myogenic Autoregulation
- 3. Regulation Mediated by Endothelium

## **B.** Chronic

hours, days to weeks, even months

## **Chronic regulation**



Guyton and Hall. Textbook of Medical Physiology, 11<sup>th</sup> edition

Especially important in case of the long-term change of metabolic demands of a tissue - to provide sufficient blood flow without circulation overload.

## **Chronic regulation**

- mediated by changes of the tissue vascularity
- $\clubsuit$  the key role lack of O<sub>2</sub>, also nutrients
- Angiogenic or vascular growth factors small peptides, best characterized: vascular endothelial growth factor (VEGF), fibroblast growth factor, and angiogenin

fast in young individuals and in newly formed tissue

## Chronic regulation

#### unstimulated muscle



#### regularly stimulated muscle



Guyton and Hall - Textbook of Medical Physiology (12<sup>th</sup> edition)

## **Regulation of Blood Flow**

- Local
- Systemic
  - A. Neural
  - B. Humoral

## Humoral regulation Vasoconstrictive substances

#### ✤ norepinephrine

 $\rightarrow$  generalized vasoconstriction ( $\alpha_1$ -rec.)

#### epinephrine (high levels)

→ vasodilatation in the skeletal muscles, liver and coronary arteries ( $\beta_2$ -rec.) → vasoconstriction in other tissues

#### ✤ angiotensin II

 $\rightarrow$  generalized vasoconstriction (+  $\uparrow$  water intake and  $\uparrow$  aldosterone)

#### vasopressin (antidiuretic hormone)

 $\rightarrow$  generalized vasoconstriction (+  $\uparrow$  reabsorption of water in the kidneys)



Ganong's Review of Medical Physiology, 23rd edition

## Humoral regulation

#### Vasodilatory substances

atrial natriuretic peptide (ANP)

 $\rightarrow \downarrow$  reactivity of the vascular smooth muscles on vasoconstrictive stimulation (+  $\uparrow$  natriuresis - mechanisms)

#### VIP (vasoactive intestinal peptide)

 $\rightarrow$  vasodilatation (+ many other effects in GIT, namely relaxation of the intestinal smooth muscles including sphincters)

#### histamine

 released in tissues (from the mast cells), or from basophiles in the blood, during tissue damage or inflammation (also allergic)

→ vasodilatation of arteriols + ↑ permeability of capillaries (edemas; anaphylactic shock) through EDRF

- Humoral regulation
- Vasodilatory substances
- kinins bradykinin and lysylbradykinin (kallidin)
  - small polypeptides, half-life several minutes
  - → vasodilatation of arteriols + ↑ permeability of capillaries (similar to histamine)

inflamed tissue + skin, salivary and GIT glands (in common conditions) XII Plasma kallikrein HMW kininogen LMW kininogen Tissue kallikrein

Ganong's Review of Medical Physiology, 23<sup>rd</sup> edition

- Humoral regulation
- **Other factors**
- ✤ions
  - vasoconstriction:
  - vasodilatation:
- ↑ Ca<sup>2+</sup>, slightly ↓ H<sup>+</sup> ↑ K<sup>+</sup>, ↑ Mg<sup>2+</sup>; ↑ H<sup>+</sup>, notably ↓ H<sup>+</sup> acetate, citrate (anions) – only mild effect