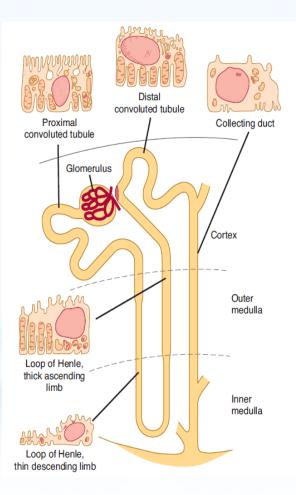
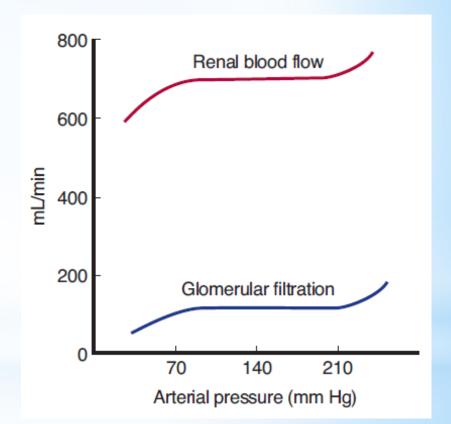
Regulation of Renal Functions Kidneys in Regulation of Homeostasis

Assoc. Prof. MUDr. Markéta Bébarová, Ph.D.

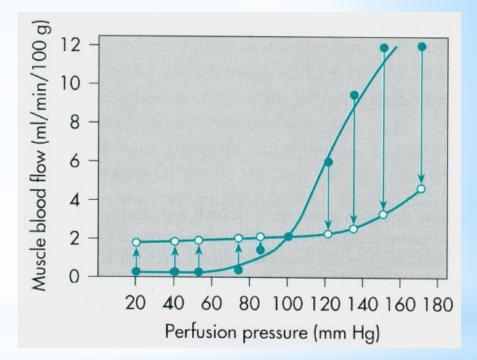

Department of Physiology Faculty of Medicine, Masaryk University

This presentation includes only the most important terms and facts. Its content by itself is not a sufficient source of information required to pass the Physiology exam.


Regulation of Renal Functions

Ganong's Review of Medical Physiology, 23rd edition

- 1) Myogenic Autoregulation
- 2) Neural Regulation
- 3) Humoral Regulation



Ganong's Review of Medical Physiology, 23rd edition

1) Myogenic Autoregulation

- dominates
- provides stable renal activity by maintaining stable blood flow at varying systemic pressure (stable glomerular pressure and, thus, also stable glomerular filtration rate)

2) Neural Regulation

- conformed to demands of systemic circulation
- renal blood flow forms 25% of the cardiac output, thus, it considerably influence BP
- sympathetic system norepinephrine

light exertion (both emotional and physical) + upright body posture $\rightarrow \uparrow$ sympathetic tone $\rightarrow \uparrow$ tone of *v. aff.* and *eff.* $\rightarrow \downarrow$ renal blood flow but without \downarrow GFR (\uparrow FF) higher \uparrow of sympathetic tone - during anesthesia and pain - GFR may already \downarrow

in healthy people – minor impact

3) Humoral Regulation

- contribute to regulation of systemic BP and regulation of body fluids
- norepinephrine, epinephrine (from adrenal medulla)

 \rightarrow constriction of aff. and eff. arterioles $\rightarrow \downarrow$ renal blood flow and GFR

in agreement with \uparrow activity of sympathetic system (small impact with the exception of serious conditions, for example serious bleeding)

3) Humoral Regulation

- contribute to regulation of systemic BP and regulation of body fluids
- norepinephrine, epinephrine (from adrenal medulla)
 → constriction of aff. and eff. arterioles → ↓ renal blood flow and GFR

- endothelin

constriction of aff. and eff. arterioles $\rightarrow \downarrow$ renal blood flow and GFR

released locally from the impaired endothel (physiological impact - hemostasis; pathologically increased levels at the toxemia of pregnancy, acute renal failure, chronic uremia)

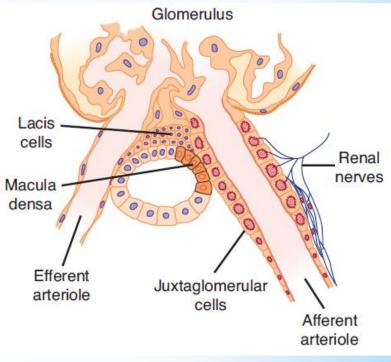
3) Humoral Regulation

- contribute to regulation of systemic BP and regulation of body fluids
- NO (from the endothel) continual basal production → vasodilation in the kidney → stable renal blood flow and GFR

prostanglandins (PGE₂, PGI₂), bradykinin

 \rightarrow vasodilation

minor impact under physiological conditions


decrease the effect of vasoconstrictive substances which reduce marked \downarrow of renal blood flow and GFR

non-steroidal anti-inflammatory agents during stress (surgery, \downarrow fluid volume) may \rightarrow notably \downarrow GFR

3) Humoral Regulation

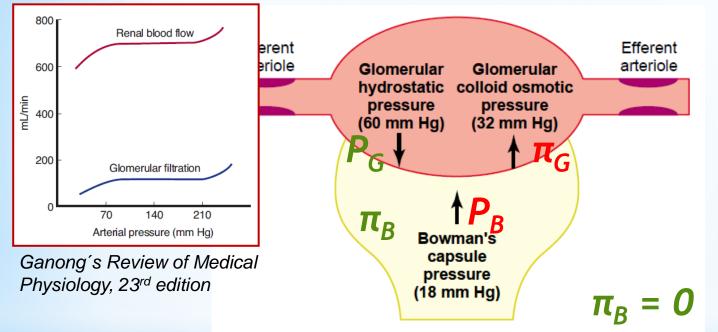
- contribute to regulation of systemic BP and regulation of body fluids
- Renin-Angiotensine System

Ganong's Review of Medical Physiology, 23rd edition

3) Humoral Regulation

Tubuloglomerular Feedback

 provides constant NaCl load in the distal tubule, prevents excessive changes of renal excretion


3) Humoral Regulation

Tubuloglomerular Feedback

Regulation of Glomerular Filtration

 $GFR = K_f \cdot net filtration pressure$

Guyton & Hall. Textbook of Medical Physiology

Under physiological conditions:

net filtration pressure = $P_G + \pi_B - P_B - \pi_G = 60 + 0 - 18 - 32 = 10$ mmHg

$$\mathsf{GFR} = K_f \cdot (P_G + \pi_B - P_B - \pi_G)$$

- controls balance between the glomerular filtration and tubular reabsorption
- 1) Local Regulation
- 2) Neural Regulation
- 3) Humoral Regulation

Glomerulotubular Balance

- † tubular reabsorption rate at ↑ load of fluid flowing through tubules (prevention of overload of distal parts of tubulus)
- namely in the proximal tubule
- local mechanisms (present even in isolated proximal tubule)
- mechanisms not fully known (changes of physical forces?)

1) Local Regulation

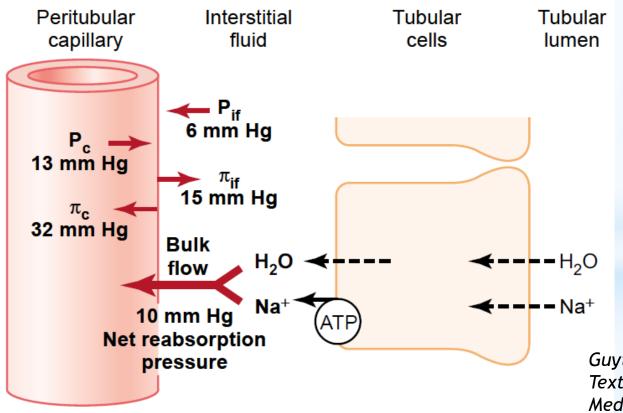
Physical Forces in Peritubular Capillaries and in Renal Intersticium

 tubular reabsorption is controlled by hydrostatic and coloid osmotic forces (similary to GFR)

GFR = $K_f \cdot$ net filtration pressure TRR = $K_f \cdot$ net reabsorptive force

1) Local Regulation

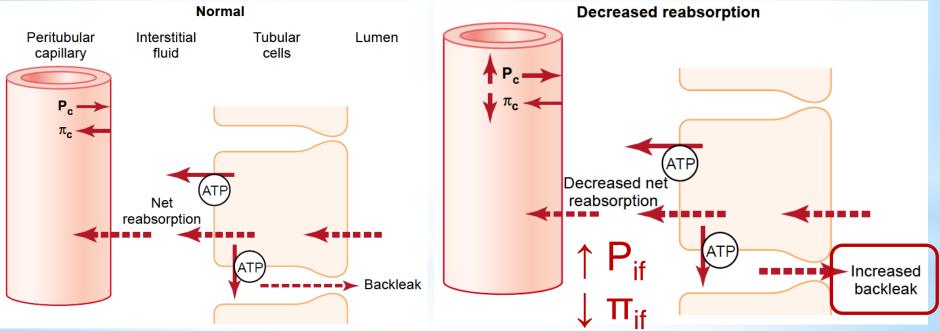
Physical Forces in Peritubular Capillaries and in Renal Intersticium


 tubular reabsorption is controlled by hydrostatic and coloid osmotic forces (similary to GFR)

$GFR = K_f \cdot \text{net filtration pressure}$ $TRR = K_f \cdot \text{net reabsorptive force}$

1) Local Regulation

Physical Forces in Peritubular Capillaries and in Renal Intersticium



Guyton & Hall. Textbook of Medical Physiology

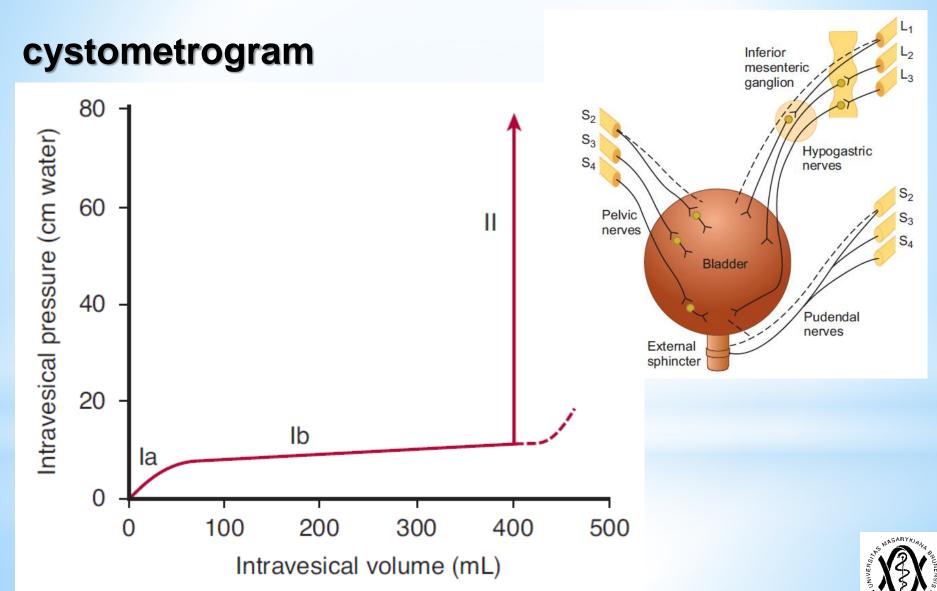
1) Local Regulation

Physical Forces in Peritubular Capillaries and in Renal Intersticium – changes in intersticium (P_{if} , π_{if})

Guyton & Hall. Textbook of Medical Physiology

 \uparrow reabsorption $\rightarrow \downarrow P_{if} a \uparrow \pi_{if} \rightarrow \downarrow$ backleak

- 2) Hormonal Regulation
 - impact separate regulation of reabsorption/excretion of particular solutes (other mechanisms are nonspecific – influence the total TRR)
 - Aldosteron
 - Angiotensine II
 - Natriuretic peptides (namely ANP)
 - Antidiuretic hormone
 - Parathormone
 - Urodilatin (renal NP)


3) Neural Regulation

Sympathicus

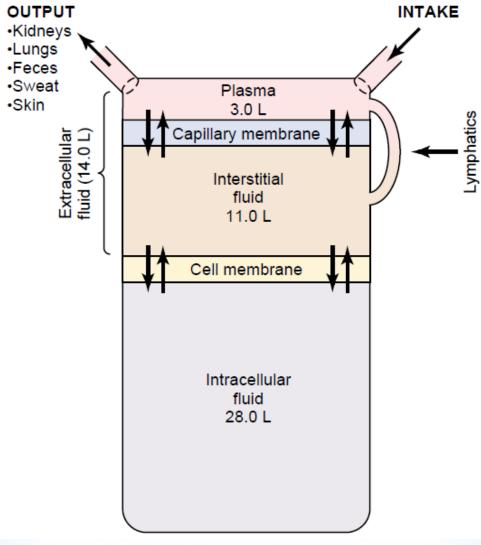
- $\rightarrow \uparrow$ reabsorption of salt and water
- during a small ↑ of its activity (α-rec. in epithelia):
 directly through ↑ reabsorption of Na⁺ in the proximal tubule, in the ascending loop of Henle and may be also in the distal parts of tubulus
- during a notable ↑ of its activity indirectly:
 → constriction of aff. and eff. arterioles → ↓ renal blood flow → ↓ P_c → ↑ TRR

Filling and emptying of the bladder

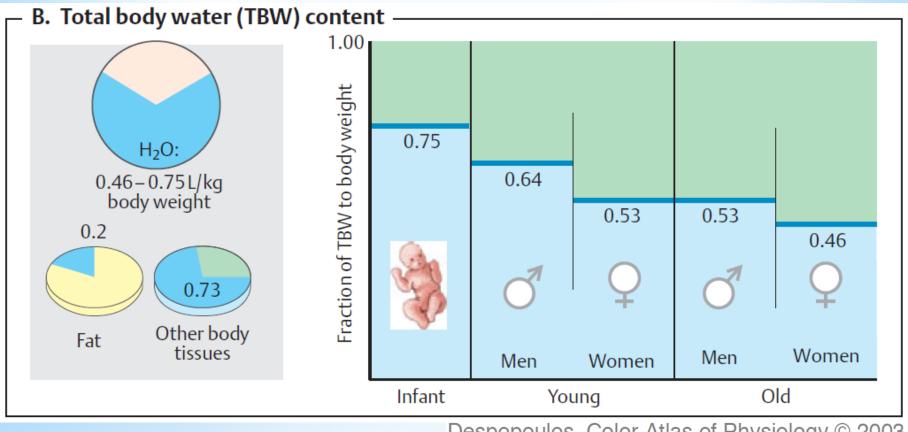
Kidney in Regulation of Homeostasis

Homeostasis

= maintainance of stable conditions in the internal body environment

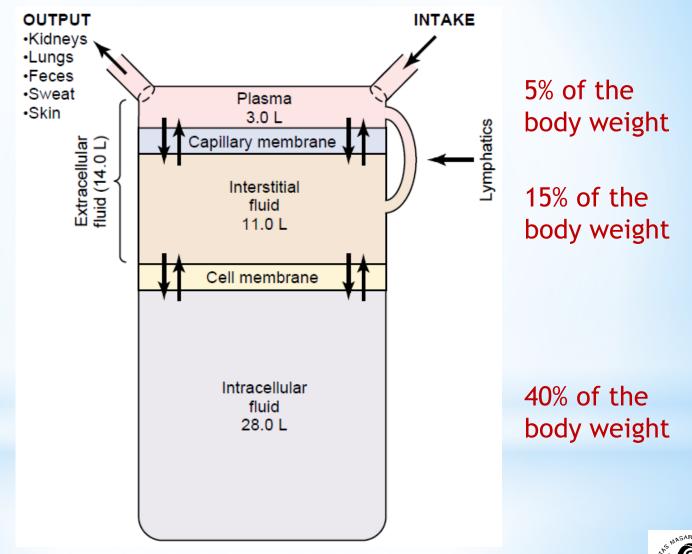

Maintainance of Constant Volume and Composition of Body Fluids Maintainance of Acid-Base Balance

Constant Volume and Composition of Body Fluids - Regulation by Kidneys -



Body fluids occupy ~60% of the body weight.

Guyton & Hall. Textbook of Medical Physiology



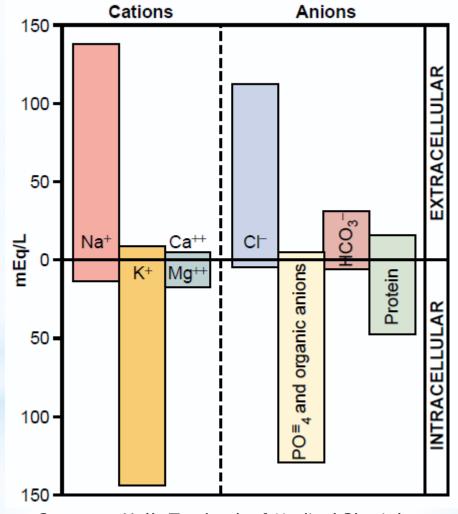
Despopoulos, Color Atlas of Physiology © 2003

Body fluids occupy ~60% of the body weight.

Transcellular fluid (1-2 l) special type of ECF. (peritoneal, pericardial, synovial, cerebrospinal and intraocular fluid)

Guyton & Hall. Textbook of Medical Physiology

Balance between Input and Output of Fluid


Daily Intake and Output of Water (ml/day)

	Normal	Prolonged, Heavy Exercise
Intake		
Fluids ingested	2100	?
From metabolism	200	200
Total intake	2300	?
Output		
Insensible—skin	350	350
Insensible—lungs	350	650
Sweat	100	5000
Feces	100	100
Urine	1400	500
Total output	2300	6600

Guyton & Hall. Textbook of Medical Physiology

Body Fluids – Composition ECF vs. ICF

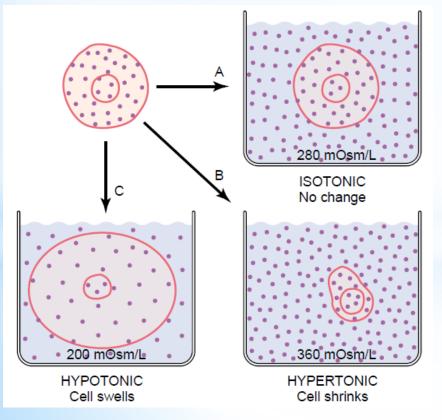
Guyton & Hall. Textbook of Medical Physiology

Body Fluids – Composition

plasma vs. ISF

	Plasma (m0sm/L H ₂ 0)	Interstitial (m0sm/L H ₂ 0)
$\begin{array}{c} Na^{\scriptscriptstyle +} \\ K^{\scriptscriptstyle +} \\ Ca^{\scriptscriptstyle ++} \\ Mg^{\scriptscriptstyle +} \\ Cl^{\scriptscriptstyle -} \end{array}$	142	139
K ⁺	4.2	4.0
Ca ⁺⁺	1.3	1.2
Mg^+	0.8	0.7
Cl	108	108
HCO ₃ ⁻	24	28.3
$HPO_4^-, H_2PO_4^-$	2	2
SO_4^-	0.5	0.5
Phosphocreatine		
Carnosine		
Amino acids	2	2
Creatine	0.2	0.2
Lactate	1.2	1.2
Adenosine triphosphate		
Hexose monophosphate		
Glucose	5.6	5.6
Protein	1.2	0.2
Urea	4	4
Others	4.8	3.9

Guyton & Hall. Textbook of Medical Physiology



Body Fluids – Composition

osmolality 285 mosm/kg H₂O

↑ NaCl intake, loss of water \rightarrow water leaves cells (shrinking of cells)

↓ NaCl intake, \uparrow water input → water sucked into cells by osmosis (cell edema)

Guyton & Hall. Textbook of Medical Physiology.

Body Fluids – Composition

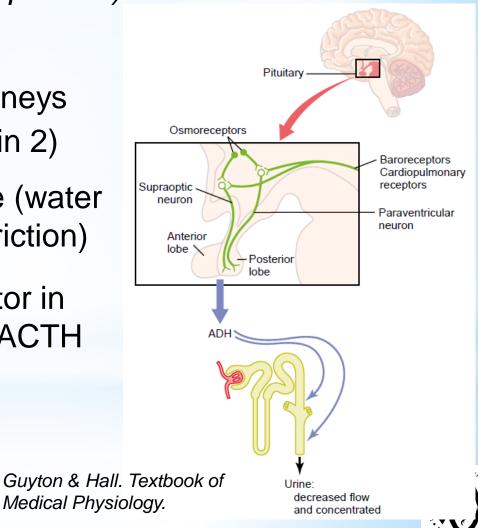
osmolality

285 mosm/kg H₂O

- ↑ NaCl intake, loss of water \rightarrow water leaves cells (shrinking of cells)
 - ↓ NaCl intake, \uparrow water input → water sucked into cells by osmosis (cell edema)

Precise regulation of osmolality of ESF is necessary!

- osmoreceptors
- kidneys (target organ for the action of hormones below)
- antidiuretic hormone
- aldosteron
- natriuretic peptides

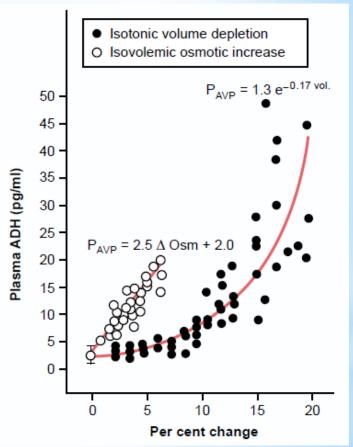


Humoral Regulation of Body Fluids

Antidiuretic Hormone (vasopressin)

- effects:

- → water reabsorption in kidneys (collecting duct, aquaporin 2)
- → control of blood pressure (water reabsorption, vasoconstriction)
- →↑ glycogenolysis, mediator in the brain, ↑ secretion of ACTH in adenohypophysis



Humoral Regulation of Body Fluids

Antidiuretic Hormone (vasopressin)

- regulation of secretion:

- \uparrow \uparrow osmolality
 - \downarrow volume of ECF
 - pain, emotions, stress (surgical), physical exertion; standing
 - nausea, vomitting
 - angiotensine II
 - morphin, nicotine, barbiturates, ...
 - \downarrow osmolality, \uparrow volume of ECF
 - alcohol; antagonists of opioids

Guyton & Hall. Textbook of Medical Physiology.

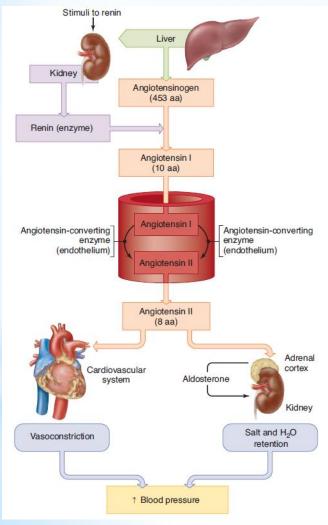
Humoral Regulation of Body Fluids Aldosteron

- the most important steroid with the mineralocorticoid effect
- mechanism of action:

binding to the mineralocorticoid receptor \rightarrow binding of the hormone-receptor complex to DNA \rightarrow mRNA \rightarrow synthesis of proteins:

- namely Na⁺/K⁺-ATPase
- 1 number of amiloride-inhibited Na⁺-channels in the membrane of target cells
- 1 activity of H⁺-pump in collecting ducts of the renal cortex
- Activity of Na+/H+-antiport in both distal and proximal parts of nephrons

Start of the effect even 10 – 30 min after release of the hormone!



Humoral Regulation of Body Fluids Aldosteron

- the most important steroid with the mineralocorticoid effect
- effects:
 - → \uparrow Na⁺ reabsorption from urine, sweat, saliva, gastric juice → \uparrow K⁺ urine excretion, \uparrow acidity of urine (exchange for Na⁺) → \uparrow K⁺ content and \downarrow Na⁺ content in muscle and brain cells
- regulation of its secretion:
 - ACTH from the adenohypophysis (a transient effect)
 - direct stimulatory effect of ↑ plasmatic concentration of K⁺ (even a small change even after a meal rich for K⁺
 fruit, vegetable) and ↓ Na⁺ (only a big change)
 - renin-angiotensine-aldosteron system

Renin-Angiotensine-Aldosteron System

Glomerulus Lacis cells Macula densa Efferent arteriole Lacis cells Afferent arteriole

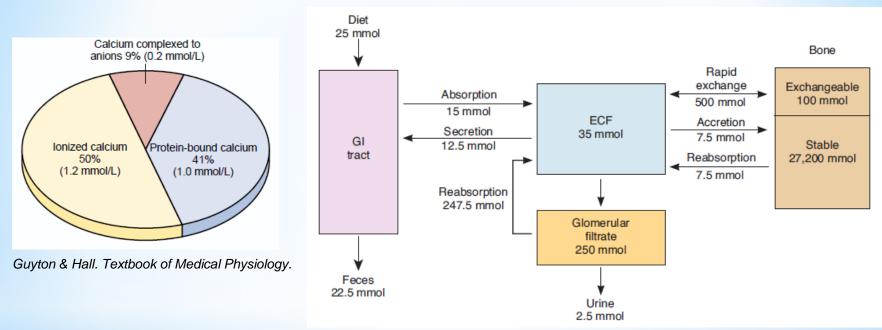
Ganong's Review of Medical Physiology

Humoral Regulation of Body Fluids Aldosteron

- the most important steroid with the mineralocorticoid effect
- regulation of its secretion:
 - ACTH from the adenohypophysis (a transient effect)
 - direct stimulatory effect of ↑ plasmatic concentration of K⁺ (even a small change even after a meal rich for K⁺
 fruit, vegetable) and ↓ Na⁺ (only a big change)
 - renin-angiotensine-aldosteron system
 - atrial natriuretic peptide (inhibition of renin secretion, ↓ reactivity of *zona glomerulosa* to angiotensine II)
 - other hormones od adenohypophysis (besides ACTH; maintenance of reactivity of *zona glomerulosa*)

Atrial Natriuretic Peptide

- one of natriuretic peptides (BNP cardiac ventricles, CNP brain)
- secreted by atrial cardiomyocytes, found also in the brain
- receptors (ANPR-A the highest affinity to ANP, ANPR-B CNP, ANPR-C all NP)
- short half-life



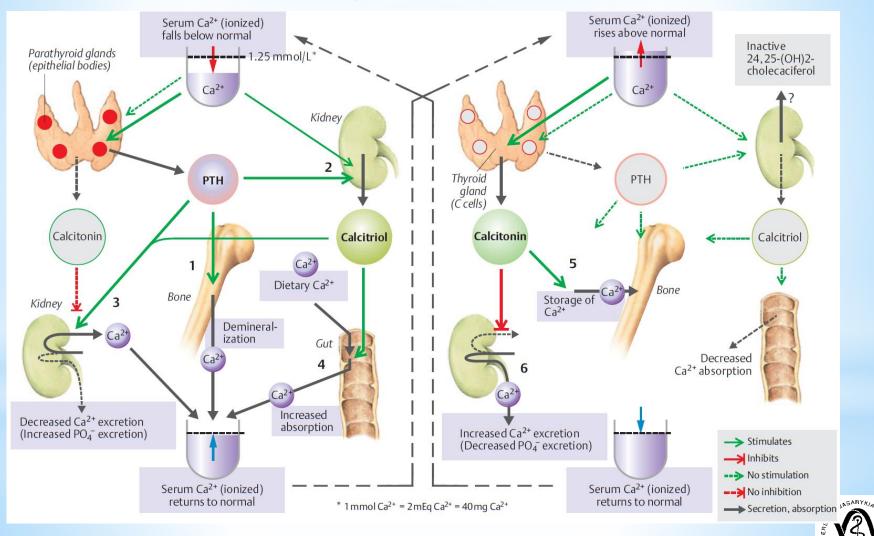
Atrial Natriuretic Peptide

- one of natriuretic peptides (BNP cardiac ventricles, CNP brain)
- effects (through \uparrow cGMP): $\rightarrow \downarrow$ BP (also through the brain stem)
 - → natriuresis (1. ↑ GFR increased area for the filtration through relaxation of mesangial cells, 2. ↑ Na⁺ excretion – decrease tubular Na⁺ reabsorption)
 - → ↓ reactivity of vascular smooth muscles for vasocontrictive substances
 - → inhibition of renin secretion, ↓ reactivity of zona glomerulosa for stimuli ↑ aldosteron secretion
 - \rightarrow inhibition of ADH secretion $\rightarrow \uparrow$ water excretion
- regulation of its secretion:
 - 1 ^ ECF volume (atrial cells' stretch at higher atrial filling)
 - \downarrow CVP at orthostasis

Calcium in the Body

Ganong's Review of Medical Physiology

hypocalcemia hypercalcemia



Hormonal Regulation of Calcemia

Parathormone Vitamin D Calcitonin

Hormonal Regulation of Calcemia

Despopoulos, Color Atlas of Physiology © 2003 Thieme

Acid-Base Balance - Regulation by Kidneys -

Acid-base balance is regulated by:

1) Buffers

- fast regulation (seconds)
- pH changes attenuated by binding and release of H⁺:

buffer + $H^+ \iff H$ - buffer

 \uparrow [H⁺] direction to the right favoured till free buffer is available

 \downarrow [H⁺] direction to the left favoured, H⁺ released

2) Lungs

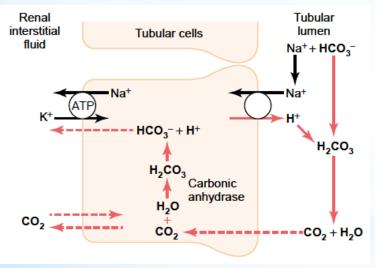
- fast regulation (minutes even hours)
- elimination of CO_2 from the body $(H_2CO_3 \rightarrow H_2O + CO_2)$

3) Kidneys

- slower regulation (hours even days) but the most powerful
- elimination of acids and bases from the body

Acid-Base Balance and its Regulation Regulation of Acid-Base Balance by Kidneys

- by excretion of acid or alkalic urine
- a high amount of HCO₃⁻ still filtered in the glomerulus GFR 180 l/day, [HCO₃⁻]_{plasma} 24 mEq/l → 4320 mEq HCO₃⁻ filtered per day - almost all ordinarily reabsorbed
- a high amount of H⁺ still secreted in renal tubules about 80 mEq of non-volatile acids are formed in the course of metabolic processes per day - have to be excreted by kidneys
- filtered HCO₃⁻ / secreted H⁺



Regulation of Acid-Base Balance by Kidneys

1) Secretion of H⁺

2) Reabsorption of HCO₃⁻

 in the proximal tubule, thick loop of Henle and at the beginning of the distal tubule

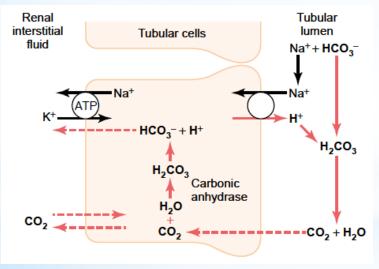
Na⁺/H⁺-antiport

>90% HCO₃⁻ reabsorbed - only a slight acidification of the urine!

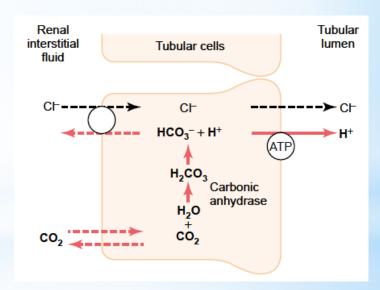
Reabsorption of HCO₃⁻ across the basolateral membrane facilitated by:

- Na⁺-HCO₃⁻ co-transport (the proximal tubule)
- Cl⁻-HCO₃⁻ exchanger

(the end of proximal tubule and the following parts of tubulus except for the thin loop of Henle)



Regulation of Acid-Base Balance by Kidneys

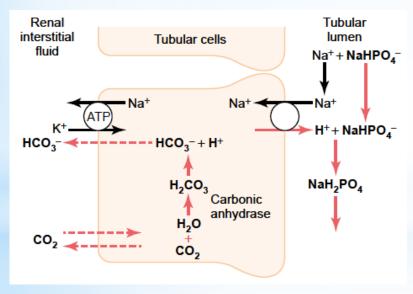

1) Secretion of H⁺

2) Reabsorption of HCO₃⁻

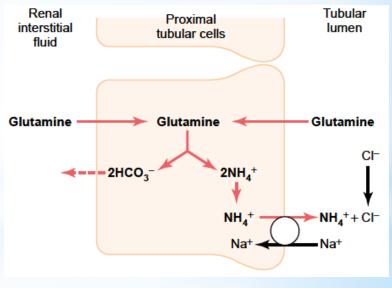
 in the proximal tubule, thick loop of Henle and at the beginning of the distal tubule

 in the final part of distal tubule and in the collecting duct

Na⁺/H⁺-antiport

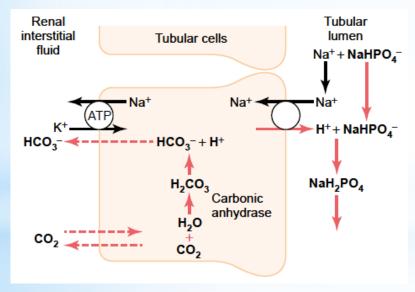

>90% HCO₃⁻ reabsorbed - only a slight acidification of the urine!

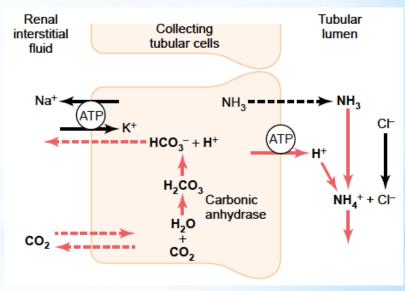
primary active transport of H⁺ (intercalated cells) acidification of urine



Regulation of Acid-Base Balance by Kidneys

- 1) Secretion of H⁺
- 2) Reabsorption of HCO₃⁻
- 3) Production of HCO₃⁻ *de novo*
 - Phosphate buffer $(HPO_4^{2-}, H_2PO_4^{-})$

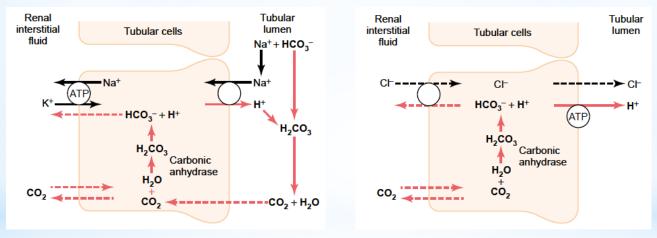



 HPO_4^{2-} and $H_2PO_4^{-}$ are reabsorbed less than water \Rightarrow their concentration in the tubular fluid gradually rises NH₄⁺ originates from glutamine - the proximal tubule, thick ascending loop of Henle and distal tubule

Regulation of Acid-Base Balance by Kidneys

- 1) Secretion of H⁺
- 2) Reabsorption of HCO₃-
- 3) Produkce nového HCO₃-
 - Phosphate buffer $(HPO_4^{2-}, H_2PO_4^{-})$

 HPO_4^{2-} and $H_2PO_4^{-}$ are reabsorbed less than water \Rightarrow their concentration in the tubular fluid gradually rises


the collecting duct (permeable for NH_3 but far less for NH_4^+ - excreted by urine) 50% of H⁺ secretion and HCO_3^- formed *de novo*!

Ammonium buffer (NH₃, NH₄⁺)

Acid-Base Balance and its Regulation Regulation of Acid-Base Balance by Kidneys

Regulation of H⁺ secretion

↑ - ↑ pCO₂ in ECF (respiratory acidosis; direct stimulation due to ↑ formation of H⁺ in tubular cells)

- *pH* in ECF (respiratory or metabolic acidosis)
- **† secretion of aldosteron** (stimulates H⁺ secretion in intercalated cells of collecting ducts; Conn´s syndrome -alkalosis)

Acid-Base Balance and its Regulation Regulation of Acid-Base Balance by Kidneys Acidosis - correction by kidneys

$$\downarrow \text{ pH} = 6.1 + \log \frac{\text{HCO}_3^-}{0.03 \times \text{P}_{\text{CO2}}} \downarrow$$

- metabolic acidosis: due to ↓ HCO₃ renal correction : ↓ HCO₃- in ECF → ↓ filtered HCO₃- → complete reabsorption of HCO₃- + its formation *de novo* (HCO₃- not excreted) + ↑ H⁺ excretion → pH normalization
- respiratory acidosis: due to $\uparrow P_{CO2}$ (hypoventilation) renal correction: $\uparrow P_{CO2}$ in ECF $\rightarrow \uparrow P_{CO2}$ in tubular cells \rightarrow \uparrow formation of H⁺ and HCO₃⁻ in tubular cells $\rightarrow \uparrow H^+$ secretion + $\uparrow HCO_3^-$ reabsorption \rightarrow pH normalization

Acid-Base Balance and its Regulation Regulation of Acid-Base Balance by Kidneys Alkalosis - correction by kidneys

↑ pH = 6.1 + log
$$\frac{\text{HCO}_3^{-1}}{0.03 \times P_{\text{CO2}}}$$
 ↑

- metabolic alkalosis: due to ↑ HCO₃⁻
 renal correction: ↑ HCO₃⁻ in ECF → ↑ filtered HCO₃⁻ → incomplete HCO₃⁻ reabsorption (lack of H+) → ↑ HCO₃⁻
 excretion by urine → pH normalization
- respiratory alkalosis : due to $\downarrow P_{CO2}$ (hyperventilation) renal correction: $\downarrow P_{CO2}$ in ECF $\rightarrow \downarrow P_{CO2}$ in tubular cells $\rightarrow \downarrow$ formation of H⁺ and HCO₃⁻ in tubular cells $\rightarrow \downarrow H^+$ secretion + $\downarrow HCO_3^-$ reabsorption \rightarrow pH normalization

