MUNI MED

Thermoregulation

Physiology II lecture (aZLFY0422p)

Tibor Stračina

1 Department of Physiology, Faculty of Medicine, Masaryk University

The presentation is copyrighted work created by employees of Masaryk University. Any unauthorized reproduction or distribution of the presentation or individual slides is against the law.

Body temperature – homeostatic parameter

	45	. 4
Heat stroke		IYPER- HERMI/
Hard exercise, fever	40	호표
ormal body temperature (36,3 – 37,1°C)	35	
Loss of consciousness		HYPO- THERMIA
	30	ᆂ
Muscle failure, cardiac fibrillation		
	25	
		MUNI

Normal body

1

Body core vs. shell

homeotherms vs. poikilotherms

Body core temperature –
 regulated within certain (narrow)
 range

- Skin temperature (shell) more
 variable (ambient t., core body t.)
- 4 Physiology II lecture (aZLFY0422p)

Adopted from: K.S. Saladin, *Anatomy & Physiology—The Unity of Form and Function,* 8th ed. (McGraw-Hill, 2018)

MED

Variations of body core temperature

- Circadian rhythm
- Circamensal rhythm (women between puberty and menopause)
- Seasonal variations (circannul rhythm)

Ageing

MED

Variations of body core temperature

MUNI Med

6 Physiology II lecture (aZLFY0422p)

A fine balance of body core temperature

MUNI MED

7 Physiology II lecture (aZLFY0422p)

Heat vs. temperature

 Heat [J] – energy transferred to or from the system; measure of the internal energy state

 Temperature [K, °C, °F] – a measure of heat content; mean kinetic energy of the particles (molecules, ions)

 $M \vdash 1$

Transfer of heat within the body

- primarily by CONVECTION
- medium = blood

- minor amount by **CONDUCTION**
- direct contact of organs/tissues

Heat production

- Metabolism: metabolic rate ≈ heat production
- Physical activity (active muscle contraction) rest vs. exercise

– Postprandial thermogenesis (food intake)

- Shivering thermogenesis
- Non-shivering thermogenesis (brown adipose tissue)

Heat intake and loss

passive processes

- **–** RADIATION
- **–** CONVECTION
- **–** CONDUCTION

skin-environment temperature gradient

MUNI MED

11 Physiology II lecture (aZLFY0422p)

Heat output (active loss)

- **–** EVAPORATION
- sensible perspiration = sweat production (1 L of <u>evaporated</u> s. = 2 428 kJ)
- Insensible perspiration = diffusion of water through skin and mucosae

- from the skin to the environment
- (RADIATION)
- (CONDUCTION)
- (CONVECTION)

Thermoregulation

- All processes involved in keeping the body core temperature within the range

- Thermoregulatory behaviour

Social thermoregulation

Afferentation

- Central thermoreceptors deep brain temperature
- temperature-sensitive neurons in anterior preoptic hypothalamus

- Peripheral thermoreceptors skin temperature
- TRP channels max 200 Magnitude of channel activation 88 channel activato TRPV2 (rodents) Temperature mly primates) ADE 50 30 40 Physiology II lecture (aZLFY0422p) 14 Temperature (°C) Adopted from:: https://doi.org/10.1016/bs.pmbts.2015.01.002

MUNT

MED

Thermoregulatory centre

anterior preoptic HYPOTHALAMUS

- integration of afferent information
- modifying the efferent pathways (vegetative, somatic) to the thermal effectors

– "set-point" vs. threshold temperature for the effector(s)

Thermal effectors

- Behaviour
- Cutaneous circulation
- Sweat glands
- Skeletal muscles (shivering)
- Horripilation
- Brown adipose tissue (nonshivering thermogenesis)

Cold-induced thermoregulatory mechanisms

Decrease of heat loss

- Behaviour: Decrease of body surface, taking warm clothes
- Vasoconstriction in the skin. Horripilation
- Inhibition of sweating
- Increase of heat production
 - Skeletal muscles: Intentional movements (behaviour). Shivering
 - Nonshivering thermogenesis (brown adipose tissue, NA, β3R, UCP1)
 - Hunger (increas of food intake)

Warm-induced thermoregulatory mechanisms

Increase of heat loss/output

- Skin vasodilatation
- Increase of sweating (evaporation)
- Increase of ventilation
- Decrease of heat production/intake
 - Behaviour: Moving out of the sun, taking light clothes. Inactiveness

(decrease of intentional movements), apathy

Loss of appetite

MUNI MED

Physiology of Exercise

Physiology II lecture (aZLFY0422p)

Tibor Stračina

19 Department of Physiology, Faculty of Medicine, Masaryk University

Work (physical activity, exercise)

20 Physiology II lecture (aZLFY0422p)

Skeletal muscle

- Contraction: isometric (static work) vs. isotonic (dynamic work)

- Blood flow depends on muscle tension
- Metabolic autoregulation: ↓pO2; ↑pCO2; ↓pH; ↑K+; ↑local temperature

– Metabolism: aerobic vs. anaerobic

– Muscle spindles – muscle tension – afferentation of exercise pressor reflex

Skeletal muscle metabolism

22 Physiology II lecture (aZLFY0422p)

Adopted from: D.U.Silverthorn: Human Physiology (An Integrated Approach) MUNI MED

Reaction of the body to exercise

Sympathetic NS (ergotropic system)

- Cardiovascular changes
- Respiratory changes
- Metabolic changes

- HOMEOSTASIS

Anticipation of exercise

- Reaction of the body (cardiovascular system)
- Prepare the body for the increased metabolism of the exercising skeletal muscles

- Same as the early response to exercise
- Resembling fight-or-flight reaction

MUNI Med

Cardiovascular response to exercise

- Increased cardiac output
- Vasoconstriction in inactive skeletal muscles, the GIT, skin, (kidneys)
- Vasodilation in active muscles (metabolic autoregulation)
- Increased venous return
- Histamine release
- Epinephrine release (adrenal medulla)
- Thermoregulation

MUNI MED

Increase of cardiac output. Cardiac reserve

- CO = SV x HR (SNS: positive inotropic and chronotropic effect)

- Cardiac reserve = maximal CO / resting CO (4-7)

- Coronary reserve = maximal CF / resting CF (~ 3.5)
- Chronotropic reserve = maximal HR / resting HR (3-5)
- Volume reserve = maximal SV / resting SV (~1.5)

CO – cardiac output; CF – coronary flow; HR – heart rate; SV – stroke volume

Changes of arterial blood pressure

PARAMETER	AT REST	DURING EXERCISE	INCREASE (x)
Cardiac output [L/min]	5 – 6	25 (35)	4 – 5 (7) cardiac reserve
Heart rate [1/min]	(45) 60-90	190 – 200 (220) age-dependent	3 – 5 chronotropic reserve
Stroke volume [mL]	75	115	~1.5 volume reserve
Systolic BP [mmHg]	120	static work ↑ dynamic work ↑↑	
Diastolic BP [mmHg]	70	static work ↑↑↑ dynamic work — /↓	
Mean arterial P (MAP) [mmHg]	~90	static work ↑ dynamic work — / ↑	
Muscle persufion [mL/min/100g]	2 – 4	60 – 120 (180) static vs. dynamic work	30 (10% COmax)

MFD

27 Physiology II lecture (aZLFY0422p)

Respiratory response to exercise

Respiratory centre - ↑ ventilation

– chemoreceptors: \uparrow pCO2 + \downarrow pH

- proprioceptors in lungs

- Sympathetic stimulation (stress - anticipation)

Respiratory response to exercise

PARAMETER	AT REST	DURING EXERCISE	INCREASE (x)
Ventilation [L/min]	6 – 12	90 – 120	15 – 20 respiratory reserve
Breathing frequency [1/min]	12 – 16	40 – 60	4 – 5
Tidal volume (V_T) [mL]	0.5 – 0.75	~2	3 – 4
Pulmonary artery blood flow [mL/min]	5 – 6	25 – 35	4 – 6
O₂ uptake (V_{O2}) [mL/min)]	250 – 300	~3000	10 – 12 (25)
CO₂ production [mL/min]	~200	~8000	~40

MUNI

MED

Adopted from:

https://studentconsult.inkling.com/read/boronmedical-physiology-3e/chapter-60/figure-60-6

 $M \vdash D$

Oxygen uptake by lungs

- Spiroergometry
- Resting V_{O2} : ~3.6 mL O_2 / (min x kg)
- $-V_{O2 max}$ objective index for aerobic power
 - untrained middle age person: 30 40 mL O₂ / (min x kg)
 - elite endurance athletes: 80 90 mL O₂ / (min x kg)
 - HF / COPD patients: **10 20** mL O₂ / (min x kg)

Determinants of V_{O2 max}

1. Uptake of O_2 by the lungs

- pulmonary ventilation

2. O_2 delivery to the muscles

- blood flow (pressure gradient - cardiac output x resistence)

- haemoglobin concentration

3. Extraction of O_2 from blood by muscle

- pO₂ gradient: blood-mitochondria

Oxygen consumption during exercise

Adopted from: D.U.Silverthorn: Human Physiology (An Integrated Approach)

MED

Physiology II lecture (aZLFY0422p 32

Blood gases during exercise

Adopted from: D.U.Silverthorn: Human Physiology (An Integrated Approach)

33 Physiology II lecture (aZLFY0422p)

MUNI MED

Energy substrate used by skeletal muscle during exercise

- Low-intensity e.: fats
- High-intensity e.: glucose

 $M \vdash D$

Data from G. A. Brooks and J. Mercier, *J App Physiol* 76: 2253–2261, 1994

Adopted from: D.U.Silverthorn: Human Physiology (An Integrated Approach)

Energy substrate use – aerobic vs. anaerobic

Adopted from: D.U.Silverthorn: Human Physiology (An Integrated Approach)

MUNT

MED

35 Physiology II lecture (aZLFY0422p)

Testing of fitness

- Spiroergometry
- Standardised workload
 - accurate: in W/kg

- comparative (simple, inaccurate): in MET
 - metabolic equivalent (actual MR / resting MR)
 - 1 MET = uptake of 3.5 ml O_2 /kg.min \approx 4.31 kJ/kg.h
 - sleeping ≈ 0.9 MET; slow walking ≈ 3-4 MET; fast running ≈ 16 MET

Indexes of fitness

- $-W_{170}$ [W/kg]
- $-V_{O2 max}$ [mL O₂ / (min x kg)]
- Aerobic / anaerobic threshold

- Fatigue
- Training
- Adaptation to exercise
- 37 Physiology II lecture (aZLFY0422p)

MUNI Med MUNI MED

Adaptation

Physiology II lecture (aZLFY0422p)

Tibor Stračina

38 Department of Physiology, Faculty of Medicine, Masaryk University

Adaptation

 Long-term functional and/or structural change as a response to long-term or repeated change (on certain level) of the environment

 Leads to decrease of energetic demand for keeping homeostasis in changed conditions

- Evolution (fixed adaptation)

Adaptation to exercise: Strength vs. Endurance training

Source: www.freepik.com - photo created by alexeyzhilkin

MUNI

MED

Source: www.freepik.com - photo created by gpointstudio

40 Physiology II seminar (aZLFY0422s)

Adaptation to exercise

Skeletal muscles

- Hypertrophy, vascularization

Cardiovascular system

- Heart adaptation (concentric hypertrophy vs. athletic heart)
- Increase in RBC and heamoglobin concentration

Respiratory system

 Increase in VC (if possible), increase in maximal respiration (increase in respiratory reserve), more effective diffusion on alveolo-capillar membrane

Metabolism

Athletic heart

- Adaptation to endurance training
- \uparrow LVEDV \uparrow SV (baroreflex) ↓ HR
- ~ CO
- $-\uparrow$ chronotropic reserve = \uparrow cardiac

reserve

Source: https://assets.beta.meta.org/discover/thematic-feed/83-athletic-heart-syndrome.jpg

Cardiac reserve in trained and untrained

 $M \in D$

Oxygen uptake in trained and untrained

Source: https://studentconsult.inkling.com/r ead/boron-medical-physiology-3e/chapter-60/figure-60-6

44 Physiology II lecture (aZLFY0422p)

MUNI MED

Adaptation to extreme temperatures

Source: www.freepik.com

MUNI MED

45 Physiology II seminar (aZLFY0422s)

The presentation is copyrighted work created by employees of Masaryk University. Any unauthorised reproduction or distribution of the presentation or individual slides is against the law.