

Thermoregulation

Physiology II lecture (aZLFY0422p)

Tibor Stračina

The presentation is copyrighted work created by employees of Masaryk University. Any unauthorized reproduction or distribution of the presentation or individual slides is against the law.

Body temperature – homeostatic parameter

Heat stroke

Hard exercise, fever

Normal body temperature $(36,3-37,1^{\circ}C)$

Loss of consciousness

Muscle failure, cardiac fibrillation

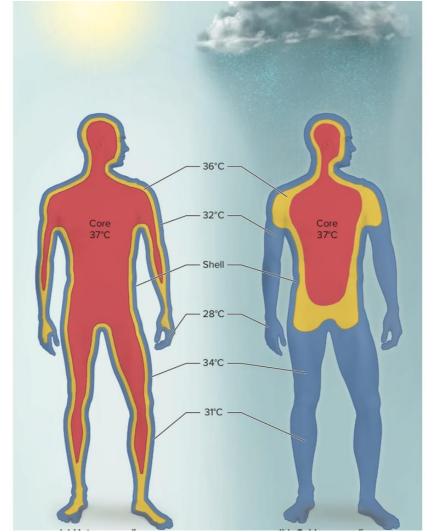
40

35

30

25

HYPO-

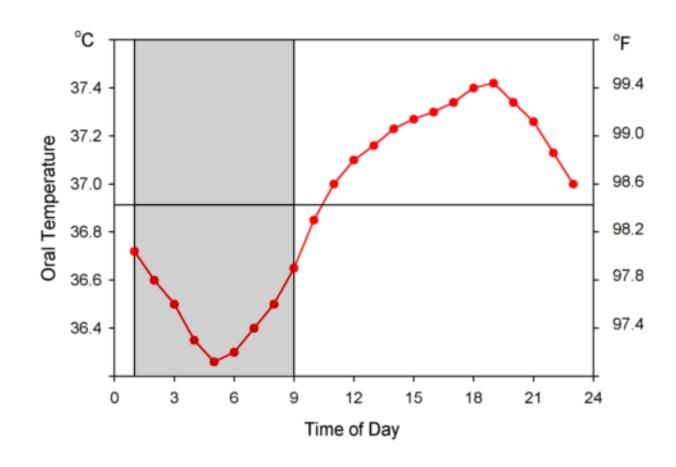


Body core vs. shell

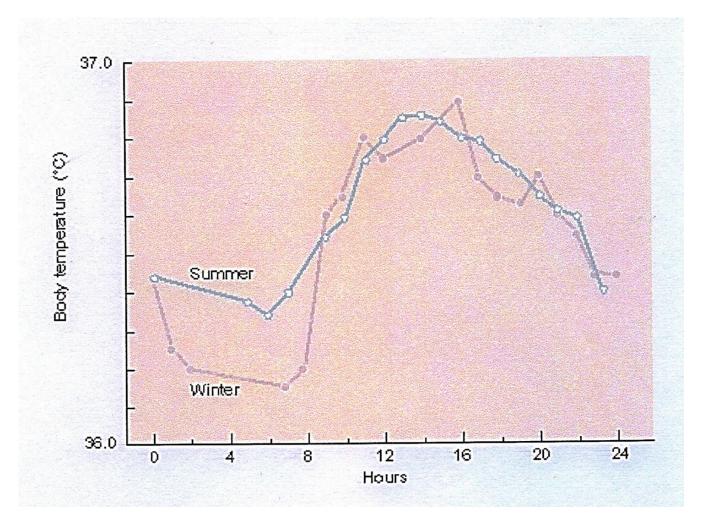
– homeotherms vs. poikilotherms

Body core temperature –regulated within certain (narrow)range

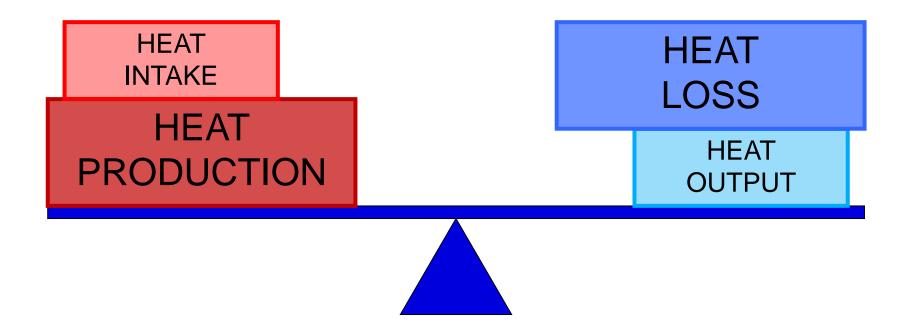
Skin temperature (shell) – more
 variable (ambient t., core body t.)


Adopted from: K.S. Saladin, *Anatomy & Physiology—The Unity of Form and Function*, 8th ed. (McGraw-Hill, 2018)

Variations of body core temperature


- Circadian rhythm
- Circamensal rhythm (women between puberty and menopause)
- Seasonal variations (circannul rhythm)

Ageing



Variations of body core temperature

A fine balance of body core temperature

Heat vs. temperature

 Heat [J] – energy transferred to or from the system; measure of the internal energy state

 Temperature [K, °C, °F] – a measure of heat content; mean kinetic energy of the particles (molecules, ions)

Transfer of heat within the body

- primarily by CONVECTION
- medium = blood

- minor amount by CONDUCTION
- direct contact of organs/tissues

Heat production

- Metabolism: metabolic rate ≈ heat production
- Physical activity (active muscle contraction) rest vs. exercise

Postprandial thermogenesis (food intake)

- Shivering thermogenesis
- Non-shivering thermogenesis (brown adipose tissue)

Heat intake and loss

passive processes

- RADIATION
- CONVECTION
- CONDUCTION

– skin-environment temperature gradient

Heat output (active loss)

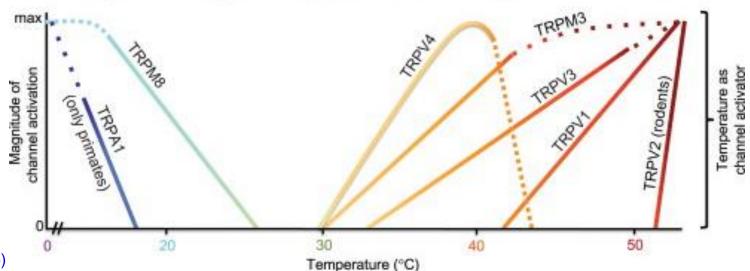
- EVAPORATION
- sensible perspiration = sweat production (1 L of evaporated s. = 2 428 kJ)
- Insensible perspiration = diffusion of water through skin and mucosae

- from the skin to the environment
- (RADIATION)
- (CONDUCTION)
- (CONVECTION)

Thermoregulation

— All processes involved in keeping the body core temperature within the range

Thermoregulatory behaviour


Social thermoregulation

Afferentation

- Central thermoreceptors deep brain temperature
- temperature-sensitive neurons in anterior preoptic hypothalamus

- Peripheral thermoreceptors skin temperature
- TRP channels

Thermoregulatory centre

anterior preoptic HYPOTHALAMUS

- integration of afferent information
- modifying the efferent pathways (vegetative, somatic) to the thermal effectors

- "set-point" vs. threshold temperature for the effector(s)

Thermal effectors

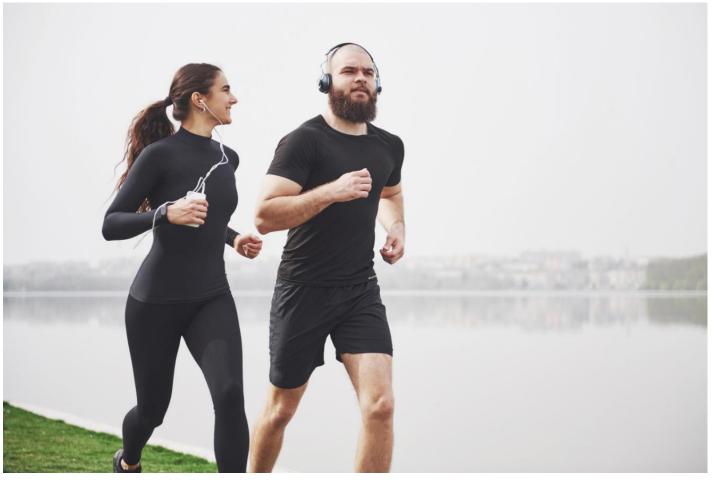
- Behaviour
- Cutaneous circulation
- Sweat glands
- Skeletal muscles (shivering)
- Horripilation
- Brown adipose tissue (nonshivering thermogenesis)

Cold-induced thermoregulatory mechanisms

- Decrease of heat loss
 - Behaviour: Decrease of body surface, taking warm clothes
 - Vasoconstriction in the skin. Horripilation
 - Inhibition of sweating
- Increase of heat production
 - Skeletal muscles: Intentional movements (behaviour). Shivering
 - Nonshivering thermogenesis (brown adipose tissue, NA, β3R, UCP1)
 - Hunger (increas of food intake)

Warm-induced thermoregulatory mechanisms

- Increase of heat loss/output
 - Skin vasodilatation
 - Increase of sweating (evaporation)
 - Increase of ventilation
- Decrease of heat production/intake
 - Behaviour: Moving out of the sun, taking light clothes. Inactiveness (decrease of intentional movements), apathy
 - Loss of appetite


Physiology of Exercise

Physiology II lecture (aZLFY0422p)

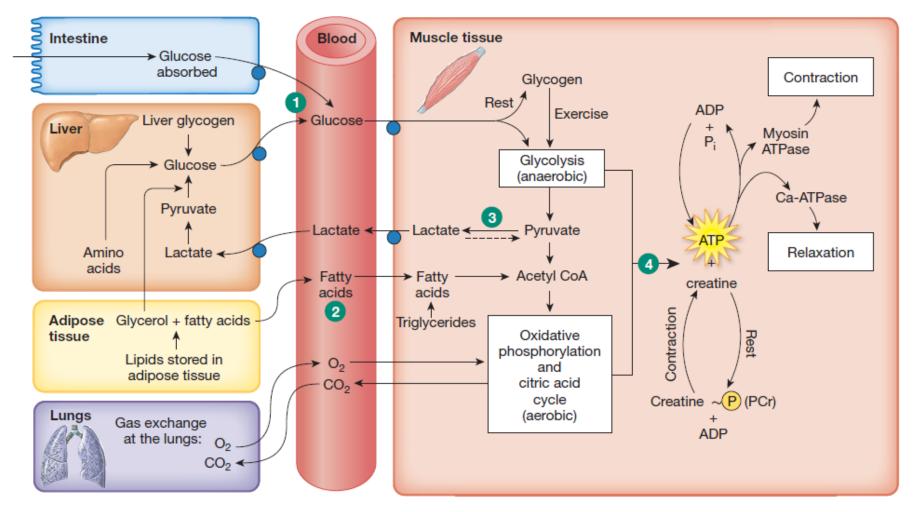
Tibor Stračina

Work (physical activity, exercise)

Source: www.freepik.com. Photos created by freepik and standret

Skeletal muscle

Contraction: isometric (static work) vs. isotonic (dynamic work)


- Blood flow depends on muscle tension
- Metabolic autoregulation: ↓pO2; ↑pCO2; ↓pH; ↑K+; ↑local temperature

– Metabolism: aerobic vs. anaerobic

Muscle spindles – muscle tension – afferentation of exercise pressor reflex

Skeletal muscle metabolism

Reaction of the body to exercise

Sympathetic NS (ergotropic system)

- Cardiovascular changes
- Respiratory changes
- Metabolic changes

– HOMEOSTASIS

Anticipation of exercise

- Reaction of the body (cardiovascular system)
- Prepare the body for the increased metabolism of the exercising skeletal muscles

- Same as the early response to exercise
- Resembling fight-or-flight reaction

Cardiovascular response to exercise

- Increased cardiac output
- Vasoconstriction in inactive skeletal muscles, the GIT, skin, (kidneys)
- Vasodilation in active muscles (metabolic autoregulation)
- Increased venous return
- Histamine release
- Epinephrine release (adrenal medulla)
- Thermoregulation

Increase of cardiac output. Cardiac reserve

– CO = SV x HR (SNS: positive inotropic and chronotropic effect)

Cardiac reserve = maximal CO / resting CO

(4 - 7)

Coronary reserve = maximal CF / resting CF

 (~ 3.5)

Chronotropic reserve = maximal HR / resting HR

(3 - 5)

Volume reserve = maximal SV / resting SV

 (~ 1.5)

CO – cardiac output; CF – coronary flow; HR – heart rate; SV – stroke volume

Changes of arterial blood pressure

PARAMETER	AT REST	DURING EXERCISE	INCREASE (x)
Cardiac output [L/min]	5 – 6	25 (35)	4 – 5 (7) cardiac reserve
Heart rate [1/min]	(45) 60-90	190 – 200 (220) age-dependent	3 – 5 chronotropic reserve
Stroke volume [mL]	75	115	~1.5 volume reserve
Systolic BP [mmHg]	120	static work ↑ dynamic work ↑↑	
Diastolic BP [mmHg]	70	static work ↑↑↑ dynamic work — / ↓	
Mean arterial P (MAP) [mmHg]	~90	static work ↑ dynamic work — / ↑	
Muscle persufion [mL/min/100g]	2 – 4	60 – 120 (180) static vs. dynamic work	30 (10% COmax)

Physiology II lecture (aZLFY0422p)

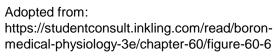
Respiratory response to exercise

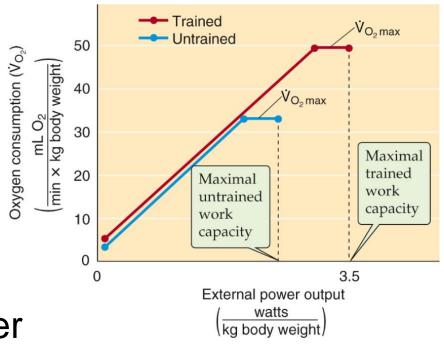
- Respiratory centre ↑ ventilation
 - chemoreceptors: ↑ pCO2 + ↓ pH
 - proprioceptors in lungs

Sympathetic stimulation (stress – anticipation)

Respiratory response to exercise

PARAMETER	AT REST	DURING EXERCISE	INCREASE (x)
Ventilation [L/min]	6 – 12	90 – 120	15 – 20 respiratory reserve
Breathing frequency [1/min]	12 – 16	40 – 60	4 – 5
Tidal volume (V _T) [mL]	0.5 – 0.75	~2	3 – 4
Pulmonary artery blood flow [mL/min]	5 – 6	25 – 35	4 – 6
O ₂ uptake (V _{O2}) [mL/min)]	250 – 300	~3000	10 – 12 (25)
CO ₂ production [mL/min]	~200	~8000	~40

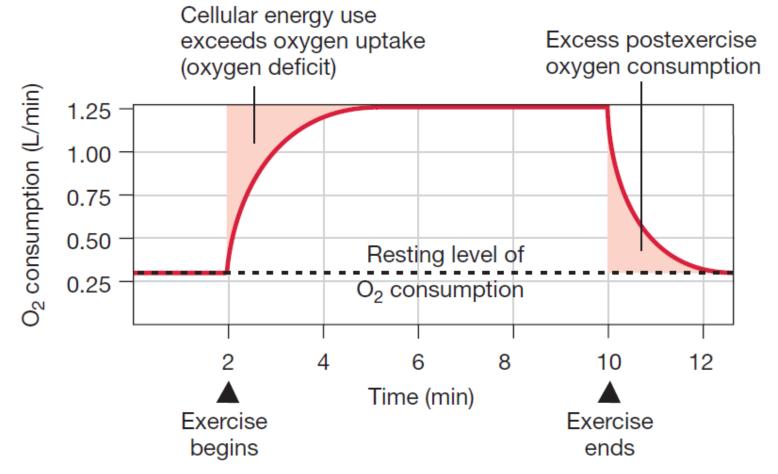

Oxygen uptake by lungs


Spiroergometry

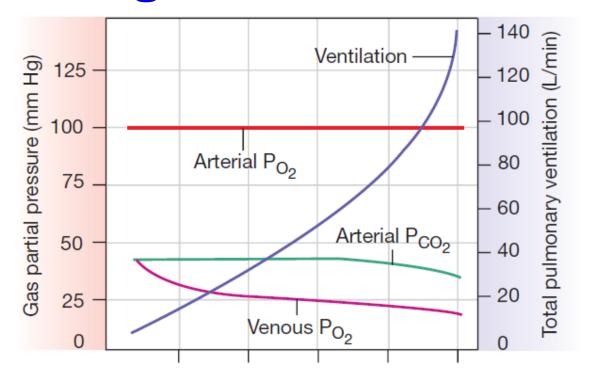
- Resting V_{O2} : ~3.6 mL O_2 / (min x kg)

- untrained middle age person: 30 40 mL O₂ / (min x kg)
- elite endurance athletes: 80 90 mL O₂ / (min x kg)
- HF / COPD patients: **10 20** mL O₂ / (min x kg)

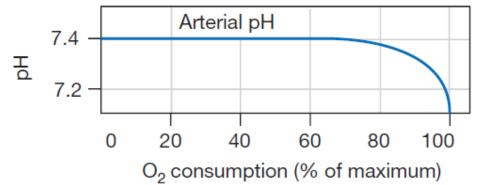
Determinants of V_{O2 max}


- 1. Uptake of O₂ by the lungs
 - pulmonary ventilation
- 2. O₂ delivery to the muscles
 - blood flow (pressure gradient cardiac output x resistence)
 - haemoglobin concentration
- 3. Extraction of O₂ from blood by muscle
 - pO₂ gradient: blood-mitochondria

Oxygen consumption during exercise

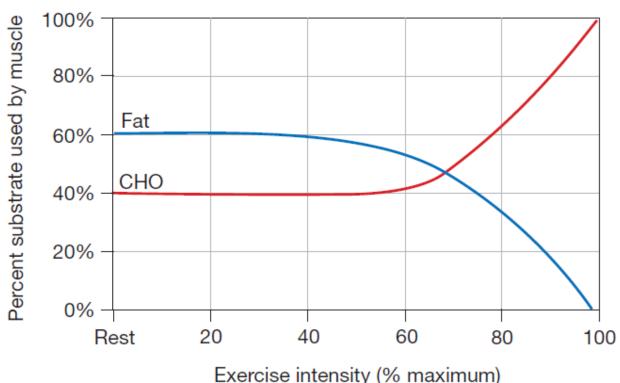

Adopted from: D.U.Silverthorn: Human Physiology (An Integrated Approach)

Oxygen debt



Blood gases during exercise

Adopted from: D.U.Silverthorn: Human Physiology (An Integrated Approach)

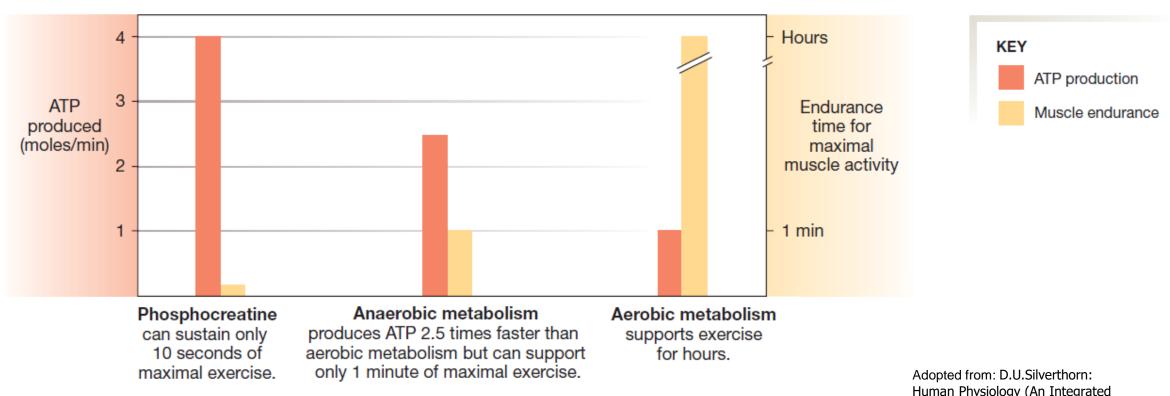


Energy substrate used by skeletal muscle

during exercise

Low-intensity e.: fats

– High-intensity e.: glucose



Data from G. A. Brooks and J. Mercier, *J App Physiol* 76: 2253–2261, 1994

Adopted from: D.U.Silverthorn: Human Physiology (An Integrated Approach)

Energy substrate use – aerobic vs. anaerobic

Human Physiology (An Integrated Approach)

Testing of fitness

- Spiroergometry
- Standardised workload
 - accurate: in W/kg

- comparative (simple, inaccurate): in MET
 - metabolic equivalent (actual MR / resting MR)
 - 1 MET = uptake of 3.5 ml O_2 /kg.min ≈ 4.31 kJ/kg.h
 - sleeping ≈ 0.9 MET; slow walking ≈ 3-4 MET; fast running ≈ 16 MET

Indexes of fitness

- $-W_{170}$ [W/kg]
- $-V_{O2 \text{ max}} [\text{mL } O_2 / (\text{min x kg})]$
- Aerobic / anaerobic threshold

- Fatigue
- Training
- Adaptation to exercise

Adaptation

Physiology II lecture (aZLFY0422p)

Tibor Stračina

Adaptation

 Long-term functional and/or structural change as a response to long-term or repeated change (on certain level) of the environment

 Leads to decrease of energetic demand for keeping homeostasis in changed conditions

Evolution (fixed adaptation)

Adaptation to exercise: Strength vs. Endurance training

Source: www.freepik.com - photo created by gpointstudio

Source: www.freepik.com - photo created by alexeyzhilkin

Adaptation to exercise

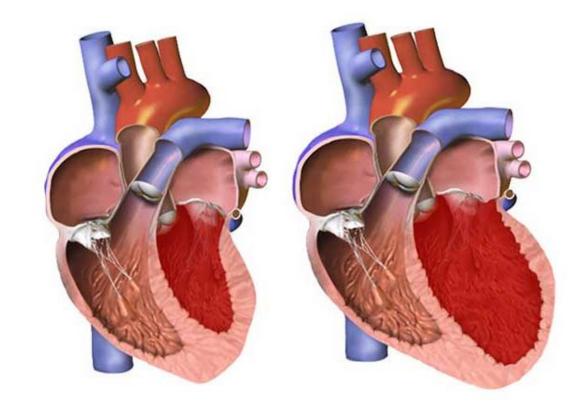
Skeletal muscles

Hypertrophy, vascularization

Cardiovascular system

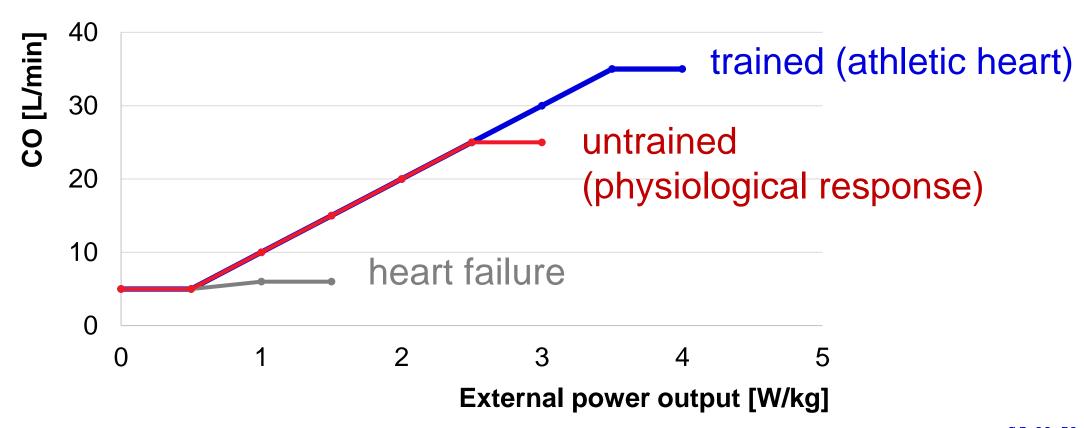
- Heart adaptation (concentric hypertrophy vs. athletic heart)
- Increase in RBC and heamoglobin concentration

Respiratory system

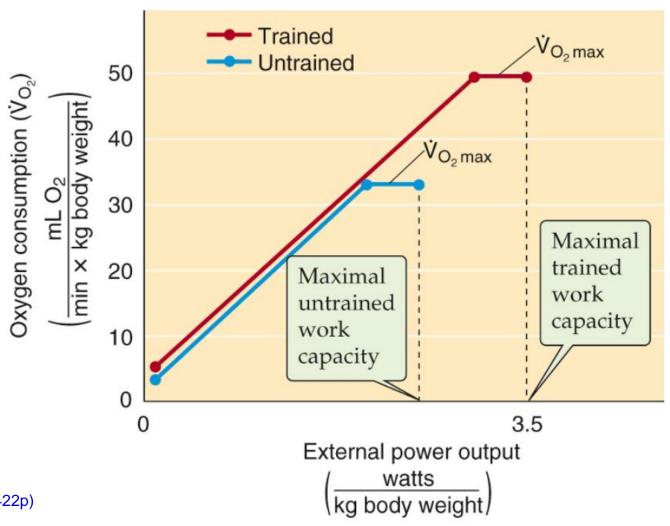

 Increase in VC (if possible), increase in maximal respiartion (increase in respiratory reserve), more effective diffusion on alveolo-capillar membrane

– Metabolism

Athletic heart


- Adaptation to endurance training
- ↑ LVEDV ↑ SV (baroreflex) ↓ HR
- _ ~ CO
- ↑ chronotropic reserve = ↑ cardiac reserve

Source: https://assets.beta.meta.org/discover/thematic-feed/83-athletic-heart-syndrome.jpg



Cardiac reserve in trained and untrained

Oxygen uptake in trained and untrained

Source: https://studentconsult.inkling.com/r ead/boron-medical-physiology-

3e/chapter-60/figure-60-6

Adaptation to extreme temperatures

Source: www.freepik.com

The presentation is copyrighted work created by employees of Masaryk University. Any unauthorised reproduction or distribution of the presentation or individual slides is against the law.

