MUNI MED

Energetic metabolism

Physiology of Exercise

1 Marie Nováková, Department of Physiology, Faculty of Medicine, Masaryk University

Energetic metabolism

- = summary of all chemical (and physical) processes included in:
- 1. Production of energy from internal and external sources
- 2. Synthesis and degradation of structural and functional tissue components
- 3. Excretion of **waste products** and **toxins** from body

Metabolic speed: amount of energy released per unit of time

Calorie (cal) = amount of thermal energy, necessary for warming up 1g of water for 1°C, from 15°C to 16°C

MUNI MED I. thermodynamic law: At steady state, input of energy equals to its expenditure

Input stores

Expenditure of energy = external work + energy stores + heat

Intermediate stages: various chemical, mechanical and thermal reactions

Energy intake (input)

Saccharides, lipids, proteins

Burning releases: 4.1kcal/g, 9.3kcal/g, 5.3kcal/g (4.1 in body) 1kcal=4184J

Conversion of proteins and saccharides to lipids – effective storage of the energy

Conversion of proteins to saccharides – need of "fast" energy

BUT: there is no significant conversion of lipids to saccharides

Energy output

1. At rest: basal metabolism; 8 000 kJ / day; 200-250 ml O₂/min; directly depends on body mass and surface;

decreases with age; increases with ambient temperature; decreases by 10-15% during sleep; genetically determined 75%BM

2. After meal: slight increase in energetic output – specific dynamic effect – e.g. for glycogen formation

- **3.** In sitting people: spontaneous physical activity
- 4. Facultative thermogenesis: non-shivering
- 5. During exercising: energetically most demanding; individual; changes according to season

7%BM

18%BM

Transport of energy among organs Liver **Pyruvate** CO_2 ATP Lactate Glucose H+ FA Free FA GlucoseLactate **Triglycerides Muscles Adipose tissue** Muscle work

MUNI

- Energy stores: ATP, creatinphosphate, GTP, CTP (cytosin), UTP (uridin), ITP (inosin)
- Macroergic bond 12kcal/mol
- Efficiency is not 100% 18kcal of substrate to 1 bond in ATP
- Daily: 63 kg of ATP (128 mol)
- Glycolysis: only short-lasting source of energy (2 pyruvates only approx. 8% of glucose energy);

supply of glucose is limited, lactate

RESPIRATORY QUOTIENT

 $\mathbf{RQ} = \mathbf{V}_{\mathrm{CO2}} : \mathbf{V}_{\mathrm{O2}}$

(per unit of time, at steady state)

Saccharides: RQ = 1Lipids: RQ = 0.7Proteins: RQ = 0.8

 $M \vdash D$

R – ratio of respiratory exchange (no steady state!)

Storage and transport of energy

- Both input and output of energy are irregular necessity of storage
- 75% of stores: triglycerides (9kcal/g) in adipose tissue (10-30% of body mass), lasts up to 2 months;
 source dietary FA and esterification with a-glycerolphosphate or synthesis from acetylCoA (from glycolysis) saccharides are converted to more effective store of energy = lipids
- 25% of stores: proteins (4kcal/g); conversion to saccharides (gluconeogenesis during stress); adverse effects on organism
- Less than **1%** of stores: saccharides (4kcal/g) as glycogen; important for CNS!!! and short-term enormous exercise; ¹/₄ of glycogen stores in liver (75-100g), rest in muscles (300-400g); liver glycogen glycogenolysis release of glucose; muscle glycogen used only in muscles (no glukoso-6-phosphatase)
- Gluconeogenesis: from pyruvate, lactate and glycerol and AA (except of leucin);NO from acetyl-CoA
- Storage and transport of energy requires input of other energy: 3% from original energy lipids (triglycerides to adipose tissue), 7% glucose (glycogen), 23% conversion of saccharides to lipids, 23% conversion of AA to proteins or glucose (glycogen).

[]/| |− |]

8 Marie Nováková, Department of Physiology, Faculty of Medicine, Masaryk University

Direct calorimetry

= measurement of energy released by burning of diet out of body (oxidation of

compounds in a **calorimeter**)

- 1. Caloric bomb
- 2. Whole-body calorimeter (for laboratory animals, for humans)

MUNI MED

10

Marie Nováková, Department of Physiology, Faculty of Medicine, Masaryk University

Indirect calorimetry

- Amount of consumed O_2 .
- Amount of energy released for 1 mol of consumed O₂; differs according to type of

oxidized compound (the effect of diet composition)

MUNI Med

Factors affecting basal metabolism

- Muscle work (before and/or during measurement)
- Food intake (before measurement)
- High or low ambient temperature (the dependence is expressed as a **U** curve)

 $M \vdash D$

- Height, weight, **body surface**
- Gender
- Age
- Emotional situation
- Body temperature
- Thyroidal status
- Plasmatic level of catecholamines

Work (physical activity, exercise)

Source: www.freepik.com. Photos created by freepik and standret

Skeletal muscle

- Contraction: isometric (static work) vs. isotonic (dynamic work)

- Blood flow depends on muscle tension
- Metabolic autoregulation: $\downarrow pO_2$; $\uparrow pCO_2$; $\downarrow pH$; $\uparrow K^+$; $\uparrow local temperature$

– Metabolism: aerobic vs. anaerobic

- Muscle spindles - muscle tension - afferentation of exercise pressor reflex

14 Marie Nováková, Department of Physiology, Faculty of Medicine, Masaryk University

Skeletal muscle metabolism

15 Marie Nováková, Department of Physiology, Faculty of Medicine, Masaryk University

Adopted from: D.U.Silverthorn: Human Physiology (An Integrated Approach) MUNI Med

Reaction of the body to exercise

 $N \vdash D$

Sympathetic NS (ergotropic system)

- Cardiovascular changes
- Respiratory changes
- Metabolic changes

– HOMEOSTASIS

Anticipation of exercise

- Reaction of the body (cardiovascular system)
- Prepares the body for the increased metabolic turnover in the exercising skeletal muscles

- Similar to the early response to exercise
- Resembling fight-or-flight reaction

Cardiovascular response to exercise

- Increased cardiac output
- Vasoconstriction in inactive skeletal muscles, the GIT, skin, (kidneys)
- Vasodilation in active muscles (metabolic autoregulation)
- Increased venous return
- Histamine release
- Epinephrine release (adrenal medulla)
- Thermoregulation

Increase of cardiac output. Cardiac reserve

- CO = SV x HR (SNS: positive inotropic and chronotropic effects)

$$-$$
 Cardiac reserve = maximal CO / resting CO (4 – 7)

- Chronotropic reserve = maximal HR / resting HR (3-5)
- Volume reserve = maximal SV / resting SV (~1.5)

CO – cardiac output; CF – coronary flow; HR – heart rate; SV – stroke volume

19 Marie Nováková, Department of Physiology, Faculty of Medicine, Masaryk University

Cardiac reserve in healthy and failing heart

Changes of arterial blood pressure

PARAMETER	AT REST	DURING EXERCISE	INCREASE (x)
Cardiac output [L/min]	5 – 6	25 (35)	4 – 5 (7) cardiac reserve
Heart rate [1/min]	(45) 60-90	190 – 200 (220) age-dependent	3 – 5 chronotropic reserve
Stroke volume [mL]	75	115	~1.5 volume reserve
Systolic BP [mmHg]	120	static work ↑ dynamic work ↑↑	
Diastolic BP [mmHg]	70	static work ↑↑↑ dynamic work — /↓	
Mean arterial P (MAP) [mmHg]	~90	static work ↑ dynamic work — / ↑	
Muscle perfusion [mL/min/100g]	2 – 4	60 – 120 (180) static vs. dynamic work	30 (10% CO _{max})

MUNI

Respiratory response to exercise

Respiratory centre - ↑ ventilation

– chemoreceptors: $\uparrow pCO_2 + \downarrow pH$

- proprioceptors in lungs

- Sympathetic stimulation (stress - anticipation)

Respiratory response to exercise

PARAMETER	AT REST	DURING EXERCISE	INCREASE (x)
Ventilation [L/min]	6 – 12	90 – 120	15 – 20 respiratory reserve
Breathing frequency [1/min]	12 – 16	40 – 60	4 – 5
Tidal volume (V_T) [mL]	0.5 – 0.75	~ 2	3 – 4
Pulmonary artery blood flow [mL/min]	5 – 6	25 – 35	4 – 6
O ₂ uptake (V _{O2}) [mL/min)]	250 – 300	~ 3000	10 – 12 (25)
CO₂ production [mL/min]	~ 200	~ 8000	~ 40

MUNT

Adopted from:

https://studentconsult.inkling.com/read/boronmedical-physiology-3e/chapter-60/figure-60-6

 $M \vdash D$

Oxygen uptake by lungs

Spiroergometry

- Resting V_{O2} : ~3.6 mL O_2 / (min x kg)
- $-V_{O2 max}$ objective index for aerobic power
 - untrained middle age person: 30 40 mL O₂ / (min x kg)
 - elite endurance athletes: 80 90 mL O₂ / (min x kg)
 - HF / COPD patients: **10 20** mL O₂ / (min x kg)

Determinants of V_{O2 max}

- 1. Uptake of O_2 by the lungs
 - pulmonary ventilation
- **2.** O_2 delivery to the muscles
 - blood flow (pressure gradient cardiac output x resistance)
 - hemoglobin concentration
- **3**. Extraction of O_2 from blood by muscle

- pO₂ gradient: blood - mitochondria

Oxygen consumption during exercise

Adopted from: D.U.Silverthorn: Human Physiology (An Integrated Approach)

MED

– Oxygen debt

26

Marie Nováková, Department of Physiolog Faculty of Medicine, Masaryk University)

Blood gases during exercise

Energy substrate used by skeletal muscle during exercise

- Low-intensity e.: fats
- High-intensity e.: glucose

Exercise intensity (% maximum)

Data from G. A. Brooks and J. Mercier, *J App Physiol* 76: 2253–2261, 1994

Adopted from: D.U.Silverthorn: Human Physiology (An Integrated Approach)

Marie Nováková, Department of Physiology, Faculty of Medicine, Masaryk University

Energy substrate use – aerobic vs. anaerobic

Human Physiology (An Integrated Approach)

MUNT

Testing of fitness

- Spiroergometry
- Standardised workload
 - exact: in W/kg
 - comparative (simple, inaccurate): in MET
 - metabolic equivalent (actual MR / resting MR)
 - 1 MET = uptake of 3.5 ml $O_2/kg.min \approx 4.31 kJ/kg.h$
 - sleeping ≈ 0.9 MET; slow walking ≈ 3-4 MET; fast running ≈ 16 MET

Indexes of fitness

- W₁₇₀ [W/kg]
- $-V_{O2 max}$ [mL O₂ / (min x kg)]
- Aerobic / anaerobic threshold

- Fatigue
- Training
- Adaptation to exercise