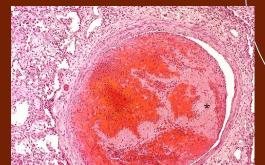

Hematology: Anemias

MUDr. Stanislav Matoušek, PhD

HEMATOLOGY

<u>Anemias and</u> <u>-penias</u> (not having enough elements) thrombocytopenia

Leukemia etc.


(oncology – lymphoand myeloproliferative disorders) E.g. chronic myeloid leukemia

Disorders of blood clotting

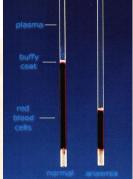
Primary hemostasis

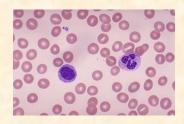
Secondary hemostasis

Bleeding disorders/ thrombo-embolism

Clinical symptoms of hematologic disease

Anemia


- \bigcirc \rightarrow signs of hypoxia tiredness, weakness, dyspnea
 - \rightarrow signs of low levels of hemoglobin paleness
- \bigcirc \rightarrow cardiovascular symptoms palpitation
- <u>Polycytemia</u> \rightarrow hyperviscose blood \rightarrow risk of thrombosis
- Bleeding, spontaneous bleeding, unceasing bleeding
- <u>Thrombosis \rightarrow embolism</u> local symptoms of swelling or ischemia DVT -, pulmonary embolism
- Frequent infections


Anemia

Hb
M: < 135 g/L F: < 120 g/L
Hct
M: < 40 % F: < 37 %
Ery
M: < 4,3 * 10¹² /L

F: < 3,9 * 10¹² /L

Principal criterion: Hb< 120 g/L in w or < 135 in m

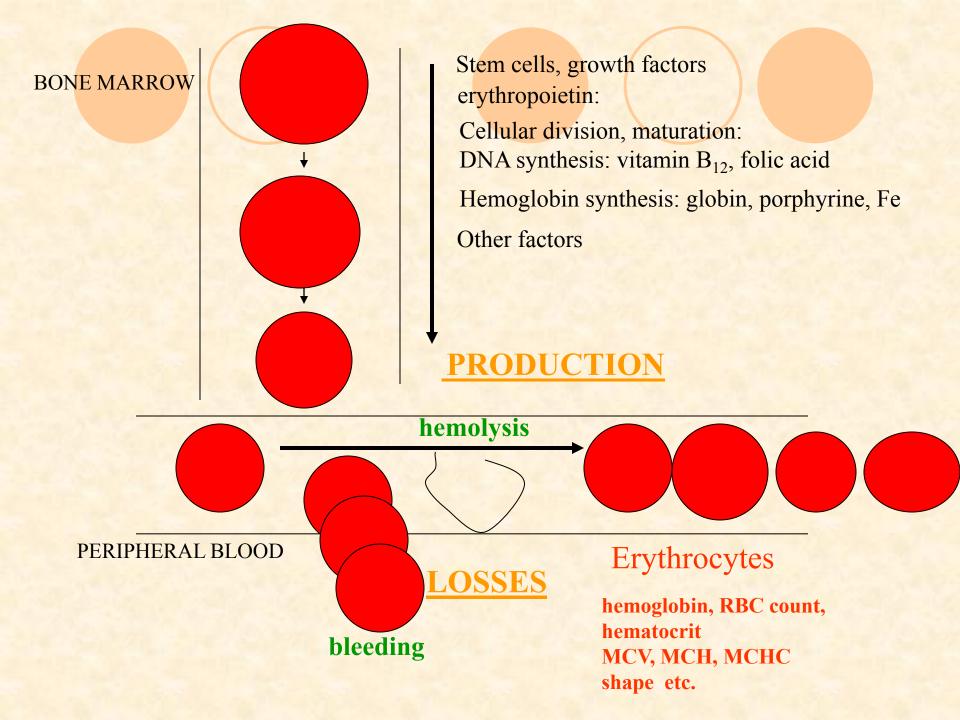
Pathophysiology of anemia symptoms

low hemoglobin concentration \implies paleness Deficient oxygen delivery into tissues Tissue hypoxia

sympaticus activated weakness,dyspnea palpitations — hyperkinetic circulation

Causes of hypoxia

- Altitude hypoxia lack of O₂ in the inspired air = low pO₂
- Respiratory insufficiency— hypoxic hypoxia
- Lack of hemoglobin transport hypoxia = anemia
- Circulatory disturbance circulatory hypoxia
 Impaired oxidation in mitochondria histotoxic hypoxia


Laboratory tests:

- Principal:
 - Complete (full) blood count (CBC or FBC)
- Complementary:
 - Tests of iron metabolism
 - Erythropoietin levels
 - Detecting antibodies against RBC Coombs test = antiglobuline test AGT
 - Osmotic fragility test
 - Historically: Ham's test (resistance in acidic environment)
 - Blood film/smear microscopic examination
 - Bone marrow cytology/ aspiration (Sternal puncture)

Anemias classified by RBC morfology (CBC)

by MCV

- microcytic e.g. iron deficiency
- normocytic e.g. acute bleeding
- macrocytic (megaloblastic) pernicious
- by MCHC (color)
 - hypochromic lack of iron
 - normochromic

Anemias by their etiology/patho

decreased production

- Stem cell failure or failure to differentiate
- disorder in DNA synthesis
- Disorder in hemoglobin synthesis
- Lack of erytropoetin / renal failure
 - Complete loss of erythropoiesis decrease of RBC count 10% / wk

increased destruction - hemolysis

- Defect of erythrocytes
- Causes outside of RBC
- increased loss bleeding
- misdistribution and loss (hyperslenism, pooling in spleen)

Reticulocyte count

- Daily replenishment rate

 0.5 1.5% of total RBC count
 - Mature during the 1st day in peripheral blood
- Criterion of bone marrow activity –
- Key test in distinguishing anemias
 - <u>Reticulocytosis</u>
 - Reaction of the BM to a blood loss (hemolytic anemias, severe bleeding)
 - Response to a correct anemia therapy (e.g. defic. B12 or Fe)
 - Reticulocytopenia
 - Defective erythropoiesis

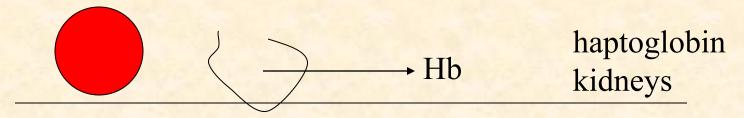
Blood loss anemia

- Acute blood loss
 - shortly after massive blood loss Hb normal due to vasoconstriction
 - normochromic normocytic
- Chronic blood loss
 - results in iron deficiency
- Excessive hemolysis (RBC destruction)

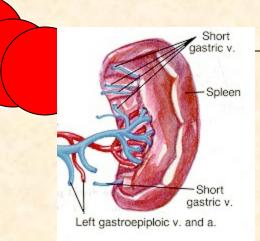
Excessive hemolysis (RBC destruction)

reticulocytosis, LDH is increased, unconjugated bilirubin accumulates

Extrinsic RBC defect (normocytic-normochromic RBC)


- Immunologic abnormalities (AIHA, PNH)
- Mechanical injury (trauma, infection)

Intrinsic RBC defect

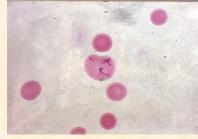

- Membrane alterations
 - congenital (spherocytosis, elliptocytosis)
 - Aquired (hypophosphatemia)
- Metabolic disorders (G6PD deficiency)
- Hemoglobinopaties (Sicle cell disease, Thalassemia)

INTRAVASCULAR

EXTRAVASCULAR

spleen, bone marrow, liver (macrophages)

SYMPTOMS OF HEMOLYSIS


loss of red blood cells

→ loose Hb

anemia

BM activation

reticulocytosis

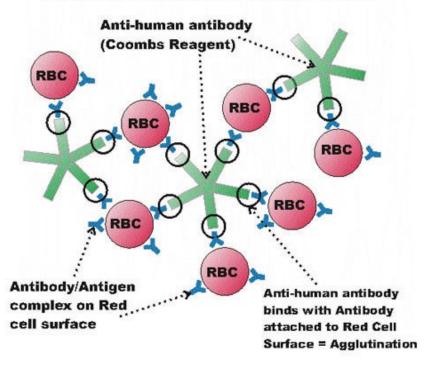
extravascular increased prodution of *bilirubin* jaundice (icterus)

<u>intravascular</u>

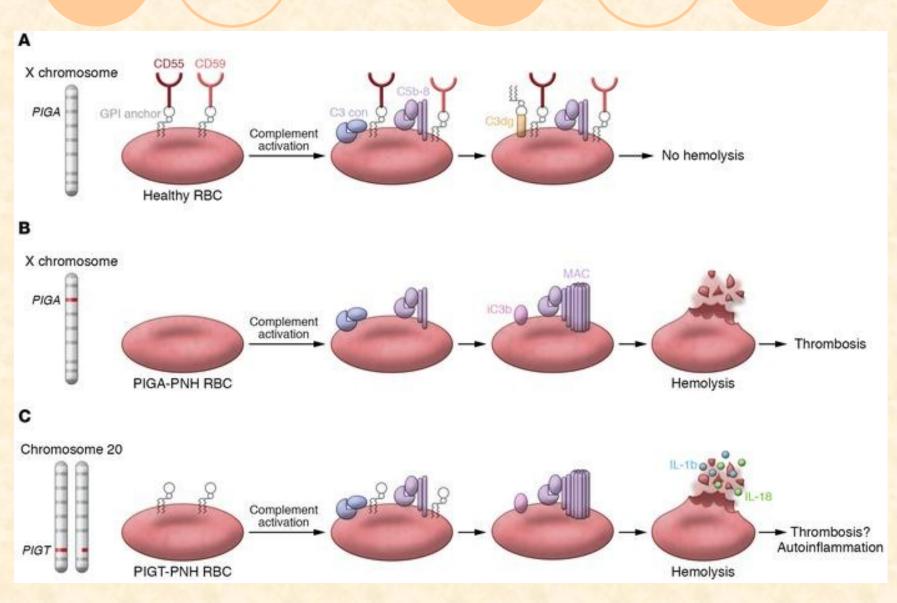
hemoglobinemia, hemoglobinuria hemosiderinuria

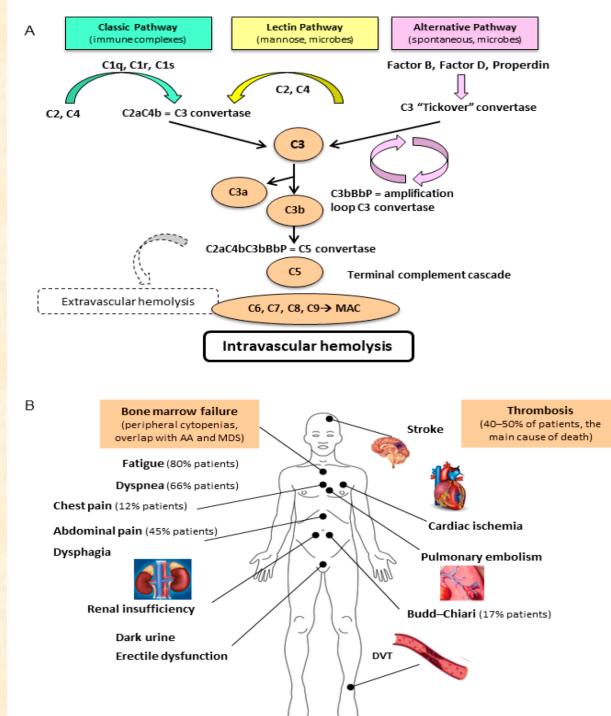
damage to the kidneys

TESTS FOR HEMOLYSIS


immune mechanisms – direct Coombs (antiglobulin) test

Search for antibodies against proper RBC


Antibodies other than AB0


These Abs are responsible for hemolysis

POSITIVE DIRECT COOMBS TEST

Paroxysmal nocturnal hemoglobinuria

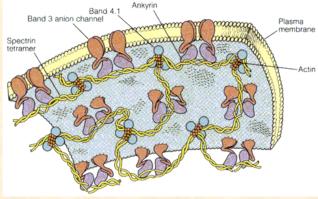
Paroxismal Nocturnal Hemoglobinuria

From: Fattizzo B, Serpenti F, Giannotta JA, Barcellini W. Difficult Cases of Paroxysmal Nocturnal Hemoglobinuria: Diagnosis and Therapeutic Novelties. *J Clin Med*. 2021;10(5):948. Published 2021 Mar 1. doi:10.3390/jcm10050948

Direct antiglobulin (Coombs') test (DAT)

- Detection of antibodies to erythrocyte surface antigens
- AIHA
- Antiglobulin serum is added to washed RBC from the patient ----- agglutination indicates presence of immunoglobulins or complement components bound to RBC

TESTS FOR HEMOLYSIS


Test of osmotic resistence

RBC survive only in isotonic surrounding but have some toleration to its changes

RBC in some hemolytic states have decreased tolerance

Special tests

membrane properties (electrophoresis of proteins) properties of hemoglobin genetic tests

Deficient erythropoiesis

- Iron deficiency
 - microcytic-anisocytosis, ↓ reticulocytes
- Vitamin B₁₂ or Folate deficiency

 macrocytes-anisocytosis
- **BM failure -** chronic diseases, aplastic anemia, myelodysplasia, leukemia
 - normochromatosis-normocytosis
 - BM hypoplasia

Tests for iron

- iron concentration in serum (age, sex)
- TIBC (total iron binding capacity for Fe)
- transferrin saturation (N 20-55 %)
- serum ferritin
- serum (solubile) transferrin receptor (sTfR)

Tests of iron metabolism

Serum iron (SI)

- F: 600-1400 μg/L, 11-25μmol/L; M: 750-1500 μg/L, 13-27μmol/L
- Low in Fe deficiency and chronic disease
- High in hemolytic syndromes and iron overload
 Total iron binding capacity (TIBC)
- 2500 4500 μg/L , 45-82 μmol/L
- High in Fe deficiency
- Low in chronic disease
- Serum ferritin (30-300 ng/mL)
- Fe storage glycoprotein
- Closely correlates with total body Fe stores
- <12 ng/mL Fe deficiency</p>
- Elevated in Fe overload, liver injury, tumors (Acute phase

Tests for iron metabolism

Serum transferin receptor

Increase in increased erythropoiesis and early Fe deficiency

RBC ferritin

- storage status over the previous 3 month (Fe deficiency/overload)
- unaffected by liver function or acute illness
 Free RBC porphyrin
- increased when heme synthesis altered

Manifest

anemia

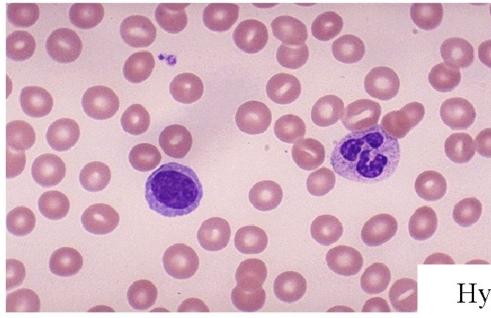
Latent iron deficiency erythropoiesis

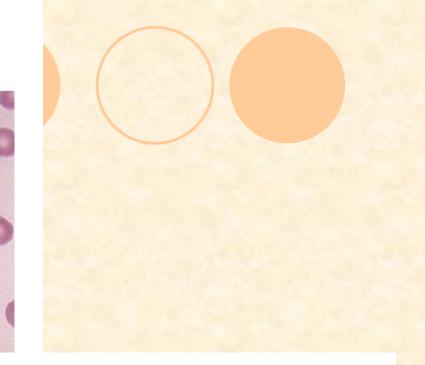
serum iron transferin satur. transferin

Prelatent no stores

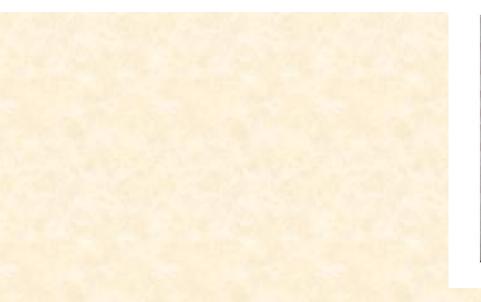
serum ferritin TIBC ~ transferin iron in BM

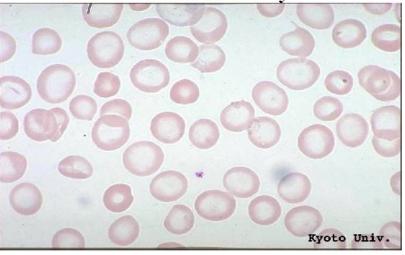
Regulation of iron




OHepcidin – signal molecule – keep your iron inside the cell! - anemia of chronic disease

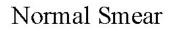
Microcytic Hypochromic Anemia (MCV<83; MCHC<31)

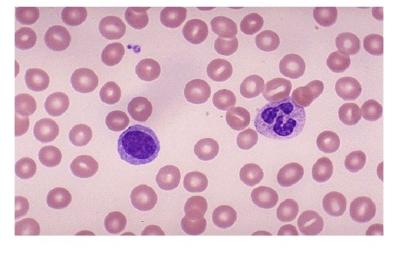

Iron deficiency	Responsive to iron therapy	Lead poisoning	Basophilic stippling of RBCs
Chronic inflammation	Unresponsive to iron therapy	Sideroblasti c	Ring sideroblasts in marrow
Thalassemia major	Reticulocytosis and indirect bilirubinemia	Hemoglobi- nopaties	Hemoglobin electrophoresis
Thalassemia minor	Elevation of fetal hemoglobin, target cells, and poikilocytosis		

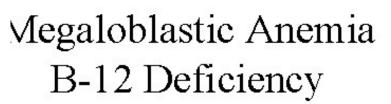

Normal Smear

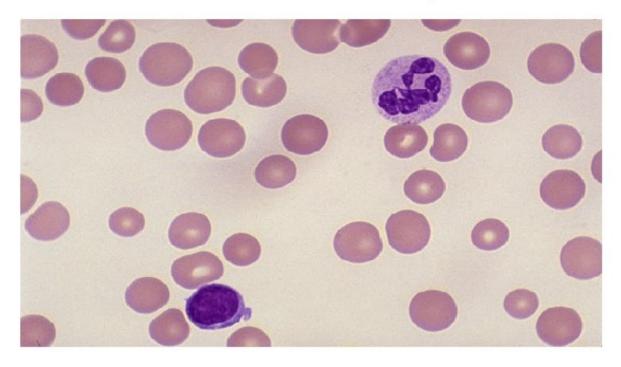
Hypochromic/Microcytic Anemia Iron Deficiency

Microcytic Hypochromic Anemia (MCV<83; MCHC<31)

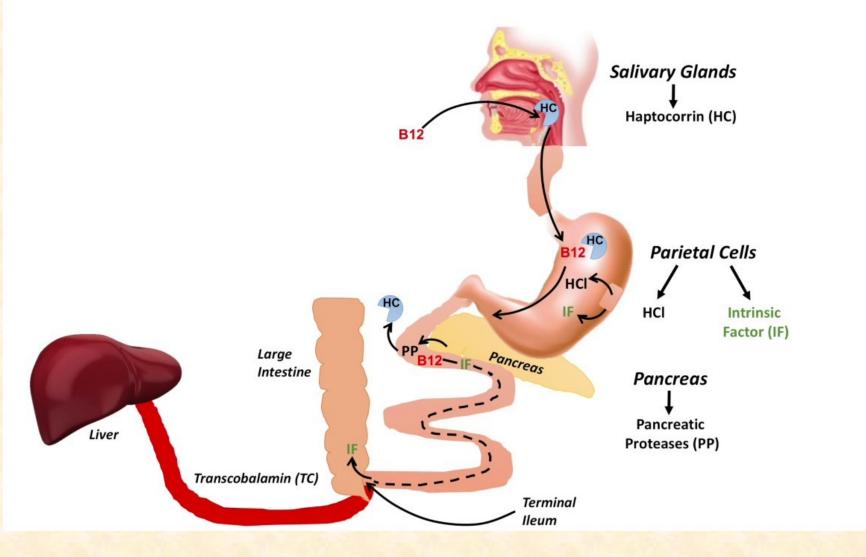

	Serum Iron	Total Iron- Binding Capacity (TIBC)	Bone Marrow Iron	Comment
Lead poisoning	N	Ν	++	Basophilic stippling of RBCs
Sideroblastic	1	Ν	++++	Ring sideroblasts in marrow
Hemoglobinopaties	Ν	Ν	++	Hemoglobin electrophoresis


<u>Microcytic Hypochromic Anemia (MCV<83;</u> <u>MCHC<31)</u>


	Serum Iron	Total Iron- Binding Capacity (TIBC)	Bone Marrow Iron	Comment
Iron deficiency	ł		0	Responsive to iron therapy
Chronic inflammation		ł	++	Unresponsive to iron therapy
Thalassemia major	1	Ν	++++	Reticulocytosis and indirect bilirubinemia
Thalassemia minor	Ν	Ν	++	Elevation of A of fetal hemoglobin, target cells, and poikilocytosis


Macrocytic Anemia (MCV, >95)

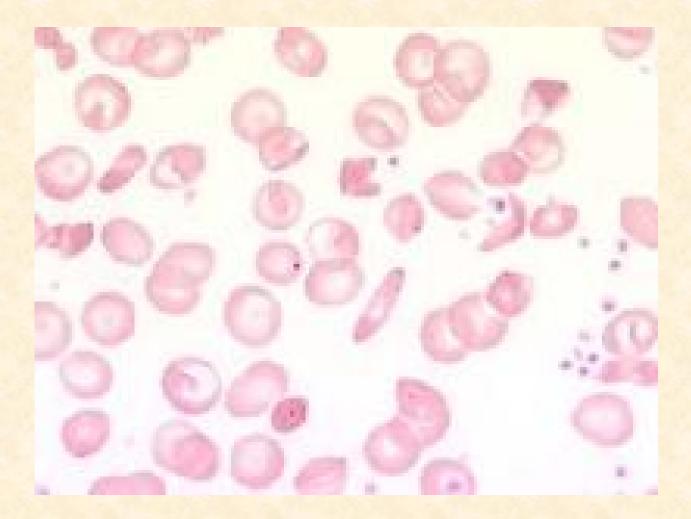
Megaloblastic bone marrow	Deficiency of vitamin B-12
	Deficiency of folic acid
	Drugs affecting DNA synthesis
	Inherited disorders of DNA synthesis
	Liver disease
	Hypothyroidism and hypopituitarism
Nonmegaloblastic bone marrow	Accelerated erythropoiesis (reticulocytes)
	Hypoplastic and aplastic anemia
	Infiltrated bone marrow



Absorption of vit. B12

Lack of vit. B12 - causes

- Not enough ingestion strict vegans if they do not take care
- Autoimmune inflammation of gastric mucosa (atrophic gastritis) leading to deficiency in intrinsic factor
- Diseases of terminal ileum (celiac disease, Crohn disease)


Blood smear

- Morphology of blood elements
 - <u>Anisocytosis</u> = variation in size
 - <u>Poikilocytosis</u> = variation in shape (schistocytes=RBC fragments; ovalocytes; spherocytes)

Various Forms of RBCs

Spherocyte	Loss of central pallor, stains more densely, often microcytic. Hereditary spherocytosis and certain acquired hemolytic anemias.
Target cell	Hypochromic with central "target" of hemoglobin. Liver disease, thalassemia, hemoglobin D, postsplenectomy.
Elliptocyte	Oval to cigar shaped. Hereditary elliptocytosis, certain anemias (particularly vitamin B-12 and folate deficiency).
Schistocyte	Fragmented helmet- or triangular-shaped RBCs. Microangiopathic anemia, artificial heart values, uremia, malignant hypertension.
Stomatocyte	Slitlike area of central pallor in erythrocyte. Liver disease, acute alcoholism, malignancies, hereditary stomatocytosis, and artifact.
Sickle cell	Elongated cell with pointed ends. Hemoglobin S and certain types of hemoglobin C and I.

Sicle Cell Disease

When to do CBC?

- suspected hematologic, inflammatory, neoplastic, or infectious disease
- screening of infants (<1 yr.), pregnant women, elderly patients, and patients with nutritional abnormalities
- routine patient evaluation, admission to hospital