

PHARMACODYNAMICS

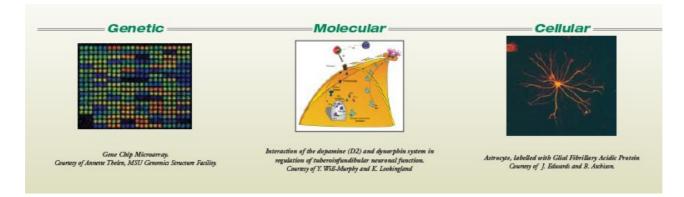
Copyright notice

The presentation is copyrighted work created by employees of Masaryk university. Students are allowed to make copies for learning purposes only. Any unauthorised reproduction or distribution of the presentation or individual slidesis against the law.

PHARMACOLOGY

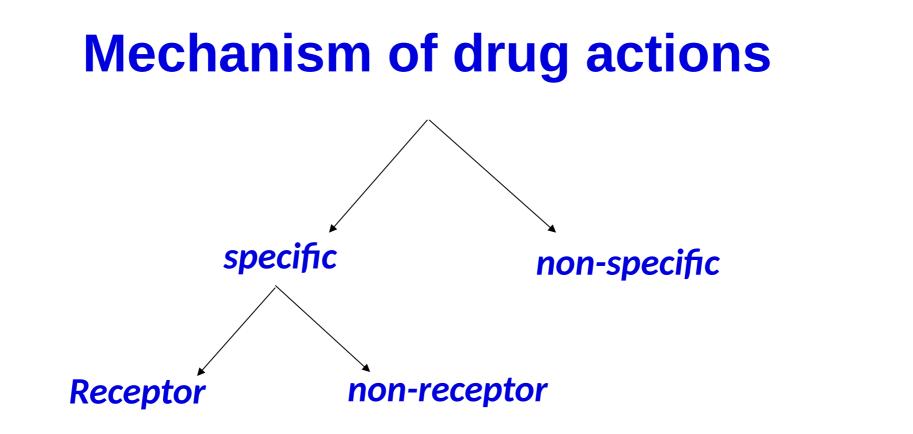
deals with the mechanism of action (e.g. receptor sites, molecular level of action..)

"How does it work"


Pharmacodynamics

(how drugs work on the body)

The <u>action of a drug on the body</u>, including receptor interactions, dose-response phenomena, and mechanisms of therapeutic and toxic action

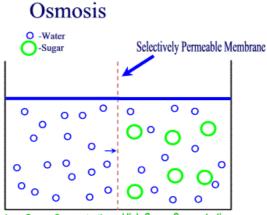

Main targets – cellular, molecular, genetic level...

- Therapeutic effects
- Adverse effects

MUNI MED

E

 $M \vdash 1$


I. Non-specific drug effects

...through by the general physical-chemical properties of substances - no specific chemical and structural configuration of drugs is needed

- influencing pH
- oxidating and reducing agents
- protein precipitation
- adsorbents / detergents
- chelating agents

a. based on osmotic properties

- e.g. salinic laxatives (magnesium sulphate, lactulosa)
- osmotic diuretics (mannitol)

Low Sugar Concentration High Sugar Concentration High Water Concentration Low Water Concentration

b. influencing acid-base balance

Antacids
 aluminium hydroxide
 magnesium carbonate
 calcium carbonate
 sodium bicarbonate

- PH modifiers (blood, urine)
 - sodium bicarbonate, ammonium chloride

MUNI MED

 $M \vdash 1$

c. based on oxido – reducing properties

- e.g. 3% hydrogen peroxide, boric acid, fenols
- chlorhexidine act as antiseptics

d. chelates (chelating agents)

- ethylenediaminetetraacetic acid (EDTA) is a chelating agent, it can form bonds with a metal ion
- dexrazoxane a cyclic analog of EDTA administered with anthracyclines to prevent cardiotoxicity \rightarrow Fe2 + ions

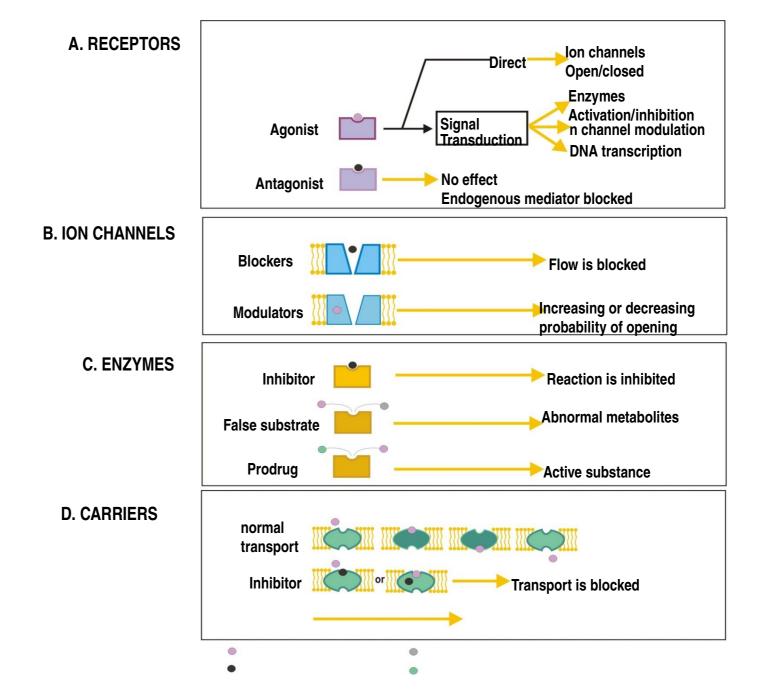
II. Specific drug effects

effect depends on the specific molecules configuration

- most drugs act (bind) on receptors
 - \succ in or on cells
 - \succ form tight bonds with the ligand

MUNI MED

Specific drug effects


many drugs inhibit enzymes

A very common mode of action of many drugs
in the patient (ACE inhibitors)
in microbes (sulfas, penicillins)
in cancer cells (5-FU, 6-MP)

some drugs bind to:

- proteins (in patient, or microbes)
- DNA (cyclophosphamide)
- microtubules (vincristine)

MUNI Med

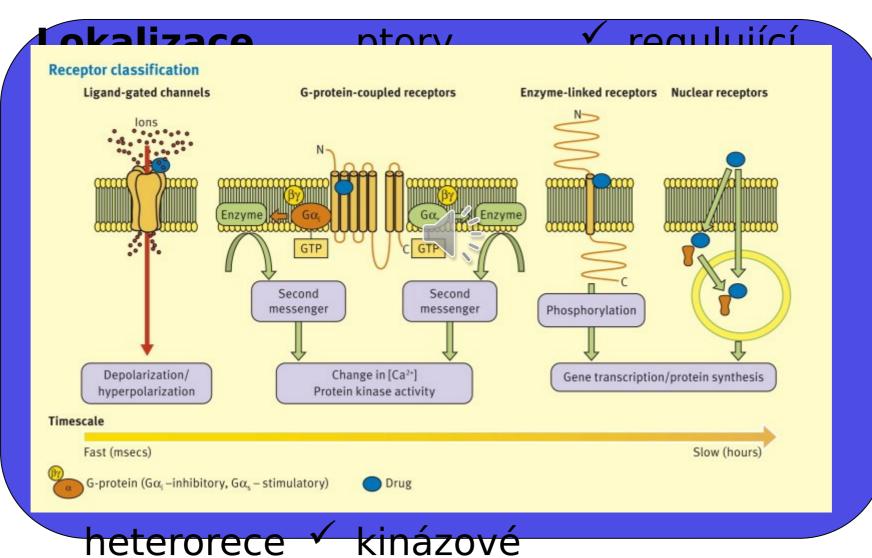
Rang and Dale Pharmacology, 2017

A. Receptor – effector system

= complex of processes
extracelullar signal ----->
intracell. signal cascade---->
effector (own effect)

- receptor = protein, which interacts ligands
 - involved in signal transduction
- effector = enzyme, ionic channel etc. change in the activity leads to the effect of drug

MED


 \checkmark ligand (signal molecule) = molecule able to bind

Receptor classification

Localization		rs		regulating	
\checkmark	membrane	T	ransduction	Li	gands
\checkmark	cytoplasm	\checkmark	metabotropic	\checkmark	achol
\checkmark	organels	\checkmark	ion. channels	\checkmark	amines
\checkmark	auto/	\checkmark	kinase	\checkmark	AMA
	heterorecepto	\checkmark	DNA	\checkmark	peptideS

Receptor classification

4 main type of receptors

	Type 1 Receptors connected with ion channels	Type 2 G-protein coupled receptor	Type 3 Receptor tyrosin kinases	Type 4 Intracellular (nuclear) receptors
Place	Membrane	Membrane	Membrane	Intracellular
Efector	lon channel	Channel or enzyme	Enzyme	Gene transcription
Binding	direct	G-protein	direct	DNA mediated
Examples	Nicotin-cholinergic receptor, GABA receptor	Muscarin-cholinergic adrenoreceptors	Inzulin, growth factor, cytokin receptor	Steroids, thyroid hormon receptors
Structure	Oligomer composed by subunits surrounding center of the channel	Monomer (or dimer) containing 7 transmembrane helical domains.	Single transmembrane helical domain interconencted with extracelular kinase	Monomer structure with separate receptor and DNA binding domain

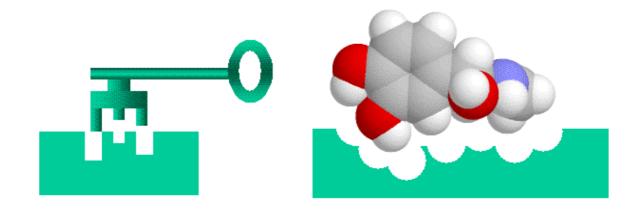
Rang and Dale Pharmacology, 2012

MUNI

MED

Receptor – effector system

__Affinity

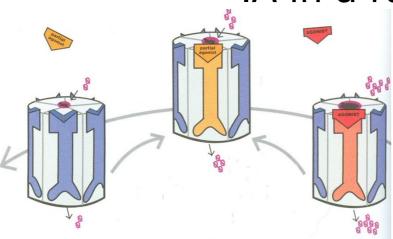

the ability of the ligand to bind to the receptor

–Instrinsic activity

ability to evoke an effect after binding to receptor

니!!the presence of sufficient number of receptor for the induction of pharmacological effect is essential as well as sufficient amounts of receptor ligand!!!

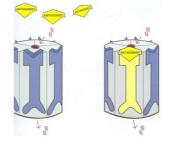
Receptor – effector system


MUNI MED

Ligand classification (intrinsic activity) AGONISTS

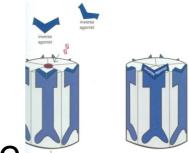
Full agonistPartial agonist

- IA = 1 dualist
 - IA in a range from 0< to >1

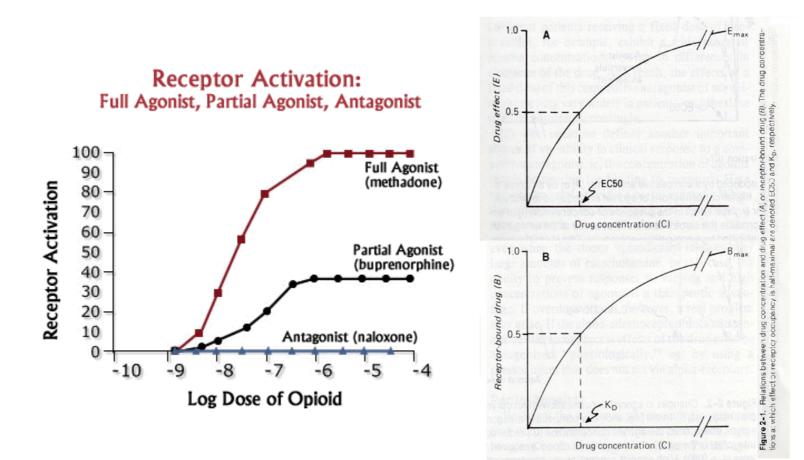


Ligand classification

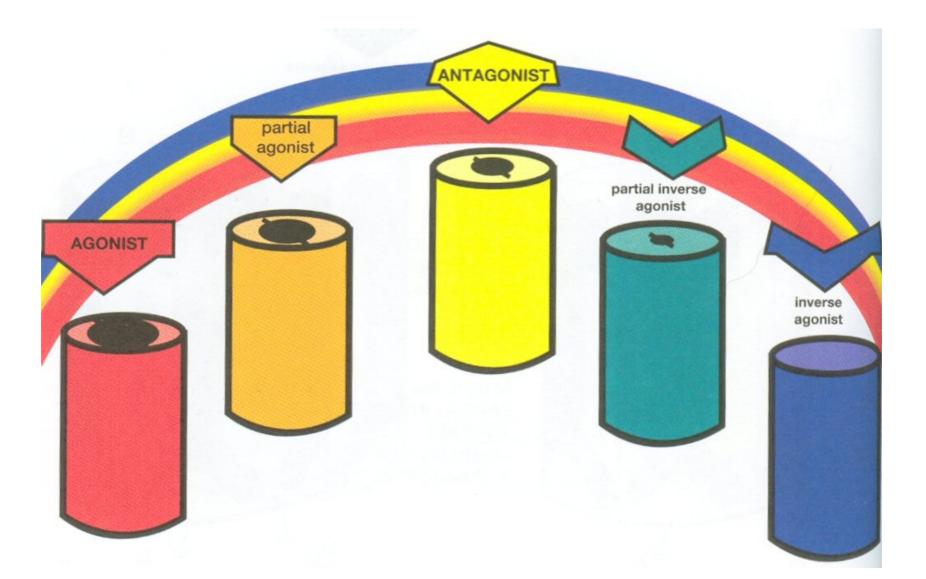
Antagonists

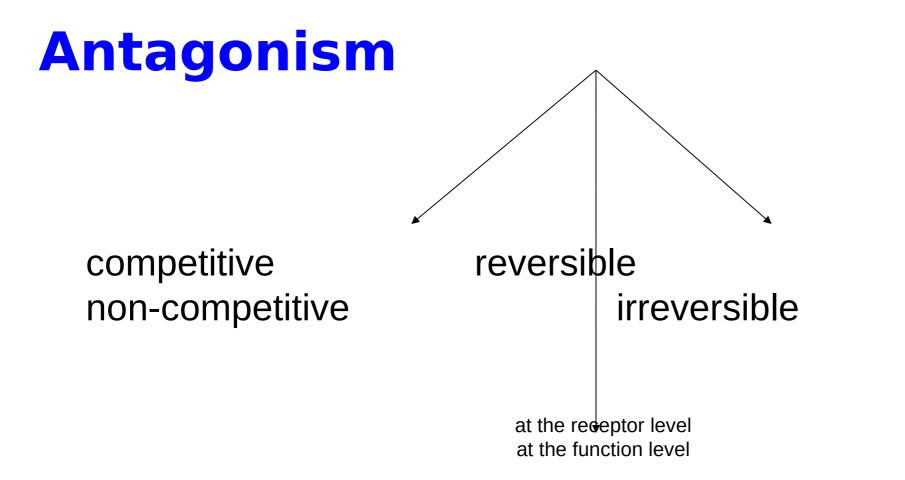

✓ IA = 0

Blocks agonist binding to receptor


Inverse agonist

✓ IA = -1




✓ Stabilizes the receptor in the constitutive activity

MUNI Receptor-effector system MED Relation between dose and effect

Spectrum of ligands

Antagonism

Competitive

- \checkmark ligands compete for the same binding site
- ✓ ↑ c of antagonist decreases agonist effect and inversely
- ✓ the presence of antagonist incerases the amounts of agonist needed to evoke the effect

Non-competitive

- ✓ allosteric antagonism
- \checkmark irreverzible bounds
- \checkmark \uparrow c of agonist does not interrupt the effect of antagonist

Regulation of receptor function

Regulation of receptor sensitivity and counts

Receptor desensitization

reducing the sensitivity of the receptors after repeated agonist exposure

<u>**Tachyphylaxis**</u> – acute drug "tolerance"

reduced sensitivity to the active substance evolving quickly (minutes) \rightarrow distortion of the signal cascade

the reactivity of the organism returns to the original intensity after the elimination of the substance

Ex. of tachyphylaxis - nitrates administration, ephedrine

<u>Tolerance</u> – reduced sensitivity to the active substance, arising from the repeated administration of the drug (days – weeks) \rightarrow down-regulation, internalization of the receptors

to achieve the original effect required increasingly higher doses of drug the original reactivity of the organism returns to a certain period of time after discontinuation of the drug

Ex. of tolerance – opioids administration

✓ incerase of receptor sensitivity/counts after chronic
 anatagonist exposure

Rebound phenomenom

after discontinuation of long-term administered drugs return to its original state or \uparrow intensity of the original condition (hypersensitivity of receptors to endogenous ligands \rightarrow upregulation) Example: chronic administration of β blockers

B. Non-receptor mechanism of action

Interaction with "non-receptor" proteins

- ♀ 1. enzyme inhibition
- 2. block of ion channels
- 3. block of transporters

"non-proteins"

 binding to cellular components (ATB-ribosomes, hydroxyapatit, tubulin etc.)

MUNI Med

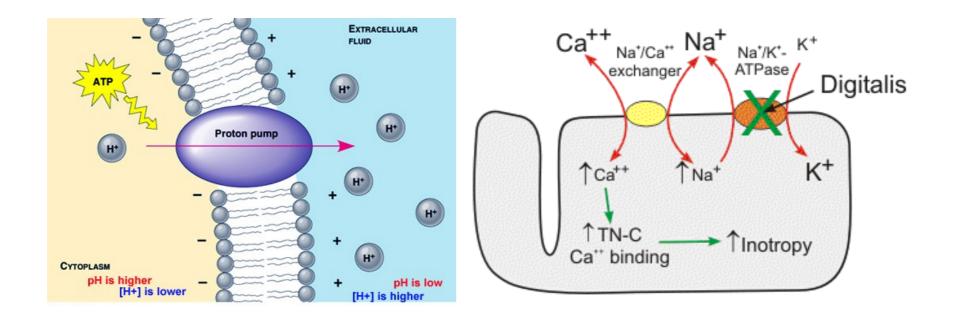
 $M \vdash 1$

1. Enzyme inhibition

Competitive or non-competitive enzyme inhibitors

- reversible
 - acetylcholinesteraze physostigmine
 - phośphodiesteraze methylxantine
- irreversible:
 - Cyklooxygenaze ASA (aspirin)
 - MAO-B selegilin
 - aldehyddehydrogenaze- disulfiram

2. Ion channels


- Calcium channel blockers (nifedipin, isradipin...)
- Potassium channel blockers (flupirtin selective neuronal potassium channel modulator, oral antidiabetics...)
- Natrium channel blockers local anesthetics

 $N/I \vdash I$

3. "Carriers"

- Proton pump inhibitors (PPIs) omeprazol
- Na⁺/K⁺ ATPasa inhibitors digoxin

MUNI MED