

THERMOREGULATION

Marie Nováková, Department of Physiology, Faculty of Medicine, Masaryk University

Heat vs. temperature

Heat [J] – (heat) energy transmitted/shared among the objects (passed or received)

– Temperature [K, °C, °F] – degree of heat energy content; mean kinetic energy of particles (molecules, ions)

 $N \vdash D$

MUNT

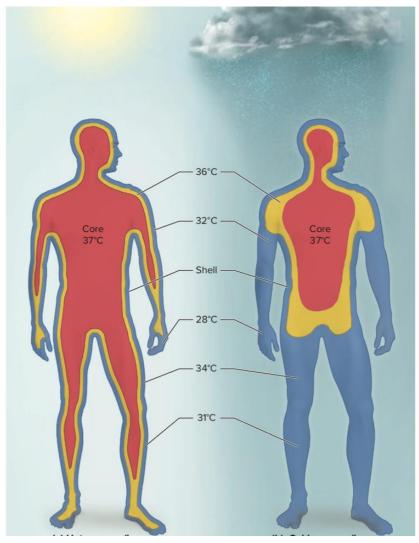
MED

Endothermic ("warm-blooded") vs. ectothermic ("cold-blooded") species

Arctic (20° - 40°C) vs. tropic (22° - 27°C water, 32° - 35°C) animals

Marie Nováková, Department of Physiology, Faculty of Medicine, Masaryk University

	Sunstroke		
40	Intensive physical exercise, fever	Symptoms	Temperature (C)
		muscle failure	28
35	Normal body temperature (36.3 – 37.1°C) Loss of consciousness	loss of body temperature control	30
55		loss of consciousness	33
		normal	37
		central nervous system breakdown	42
30		death	44
	Skeletal muscles failure,		
25	ventricular fibrillation		

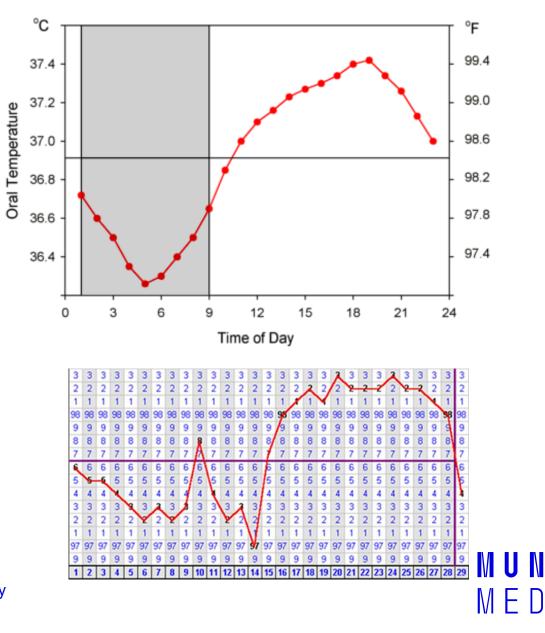

MUNI MED

Core vs. Periphery (Shell)

- homeothermic vs. poikilothermic

Core temperature – kept within (narrow)
range

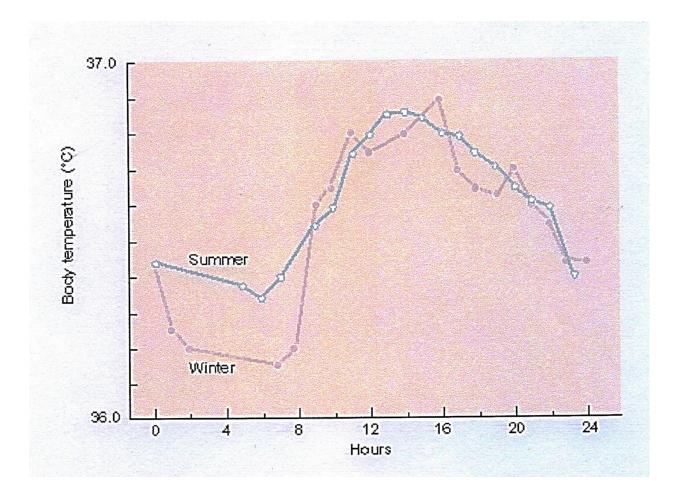
 Skin temperature (periphery, shell) –
changing (depends on core and ambient temperatures)


Adopted from: K.S. Saladin, *Anatomy & Physiology—The Unity of Form and Function,* 8th ed. (McGraw-Hill, 2018)

MED

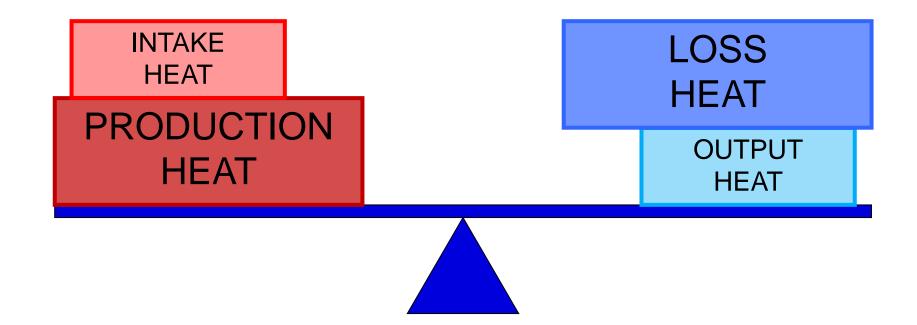
Variability of core temperature

- Circadian rhythm


 Circamensal rhythm (women from puberty to menopause)

Variability of core temperature

Seasonal variability (circannual rhythm)


– Aging

MUN1

MED

Fine equilibrium of core temperature

Transfer of heat in the organism

- primarily CONVECTION
- medium = blood

to lower extent CONDUCTION

• Inner heat convection (between inner organs and skin)

 $M \vdash D$

• Outer heat convection – heat output

Heat production

- Metabolism: metabolic turnover ~ heat production (+10% BM ~ +1°C)
- Physical activity (muscle contractions) rest vs. exercise (exercising muscles

produce up to 70-90% of actual total heat production)

- Postprandial thermogenesis (food intake)
- Shivering thermogenesis (voluntary and non-voluntary shivering thermogenesis)
- Non-shivering thermogenesis (brown adipose tissue)

Heat intake and loss

– "passive" processes

- RADIATION (irradiation, IR, "touchless" heat sharing)
- CONVECTION
- CONDUCTION (touch)

- Dependent on temperature gradient shell (skin) - surrounding environment

 $N \vdash D$

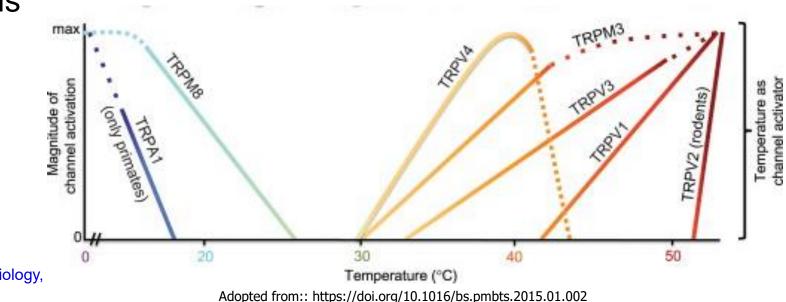
Heat output (active loss)

- EVAPORATION
- perspiratio sensibilis = sweat production (1 I of evaporated sweat = 2 428 kJ)
- perspiratio insensibilis = diffusion of water through skin and mucosa

- (RADIATION)
- (CONDUCTION)
- (CONVECTION)

Thermoregulation

- All processes aiming to keep core temperature within desired range


Thermoregulatory behavior

- Social thermoregulation

Afferentation

- Central thermoreceptors brain (core) temperature
- Temperature-sensitive neurons in anterior hypothalamus (area preoptica)

- Peripheral thermoreceptors skin (shell) temperature
- TRP channels

MED

14 Marie Nováková, Department of Physiology, Medicine, Masaryk University

Thermoregulatory center

Anterior HYPOTHALAMUS (area preoptica)

- Integration of afferent information
- Modification of efferent pathways (vegetative, somatic) impact on effector systems

- "set-point" vs. threshold temperature for effector systems

Effector systems of thermoregulation

- Behavior
- Skin circulation
- Sweat glands
- Skeletal muscles (voluntary movements, shivering thermogenesis)

 $M \vdash 1$

- Horripilation (piloerection)
- Brown adipose tissue (non-shivering thermogenesis)

Cold-induced mechanisms

- <u>Strategy</u>: minimize heat loss
 - Behavior: decrease body surface, dress up properly
 - Vasoconstriction in skin, horripilation
 - Inhibition of sweating
- <u>Strategy</u>: increase heat production
 - Skeletal muscle: more frequent voluntary movements (behavior), shivering
 - Non-shivering thermogenesis (brown adipose tissue, NA, $\beta_3 R$, lipolysis, lipoprotein

lipase and thermogenin expression, mitochondrial uncoupling - UCP1)

Increased appetite (increased food intake)

Heat-induced mechanisms

- <u>Strategy</u>: increase heat loss/output
 - Skin vasodilation
 - Increase sweating (evaporation)
 - Increase ventilation
- <u>Strategy</u>: decrease heat production
 - Behavior: search for shadow, light dress
 - Inactivity, apathy
 - Loss of appetite (decreased food intake)