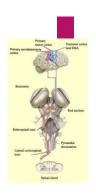

Supraspinal System of Movement Control

- Medial system
 bilateral
 - terminates on the interneurons or the medial column of lower motor neurons
 - controls maintenance of balance and postural movements
- . Lateral system
- mostly cross the midline and descend contralaterally
- terminates on the interneurons or the lateral column of lower motor neurons
- controls fine manipulative movements of the hand and fingers

Medial System


- Cortical pathways
 - Anterior corticospinal tract medial column of lower motor neurons
- Subcortical pathways
- Medial and lateral vestibulospinal tracts
 control of balance and postural movements, head movements
- Tectospinal tract (sup. colliculus)
 coordination of movements of the head and eyes during watching
- Medial (pontine) and lateral (medullary) reticulospinal tracts control of postural movements

Lateral System

- Cortical pathways
- Lateral corticospinal tract
- Subcortical pathways
- Rubrospinal tract (Red nucleus of mid brain) contralaterally descends to the lateral column facilitatory to flexors of upper limb

Corticospinal Tract (or Pyramidal Tract) Criticospinal Tract (or Pyramidal Tract) originates in the motor cortex form the medullary pyramids at the level of the medulla 90% of the axons cross over to the contralateral side at the pyramidal decussation, forming the lateral corticospinal tract (lateral funiculus of the spinal cord)- responsible for the control of the distal musculature 10% of the axons (anterior corticospinal tract-anterior funiculus) cross over to the contralateral side through the anterior white commissure- responsible for the control of the proximal musculature

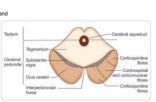
Corticospinal tract and Corticonuclear Tracts voluntary movements of the body

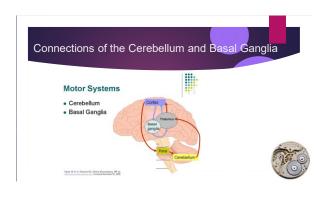
Corticonuclear tract

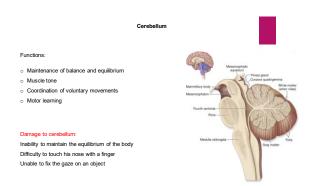
terminate in the contralateral (and to some ipsilateral and some bilateral) motor nuclei of the cranial nerve

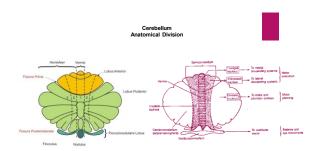
• somatomotore - ncl. CN. III., IV., VI., XII

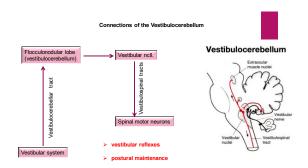
branchiomotore - ncl. CN. V., VII., IX., X

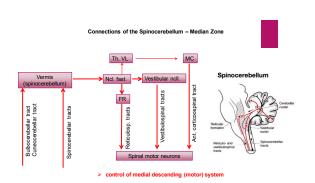


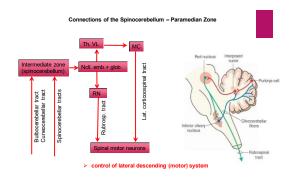


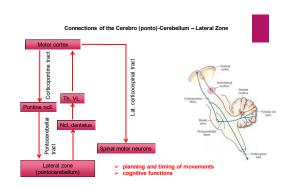

Figure 5.14: Transverse section of the midbrain showing its main subdivisions

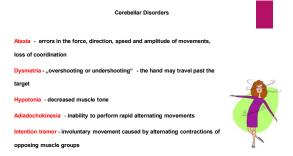

Motor Cortex

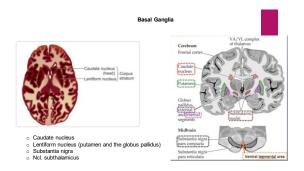


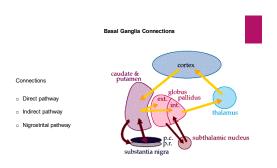


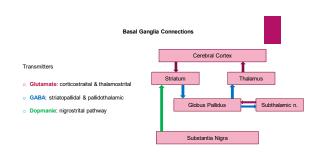


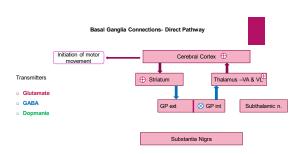


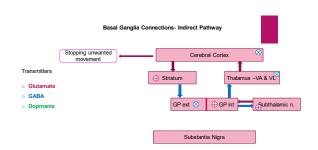


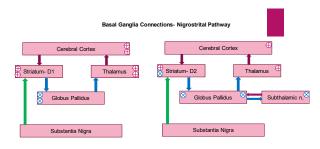


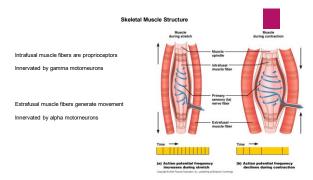


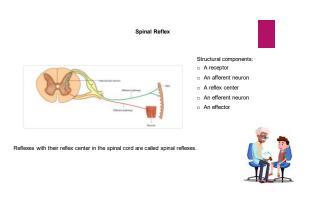


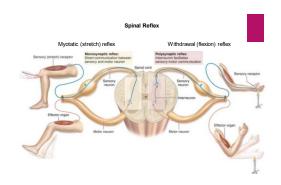


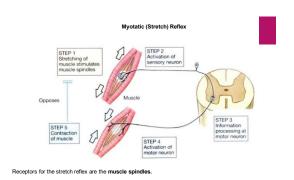


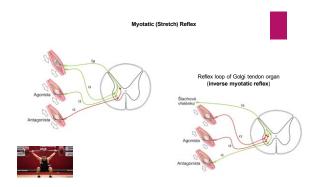


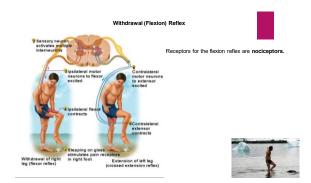


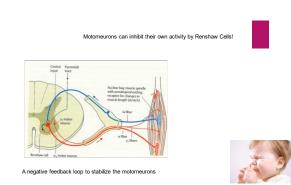


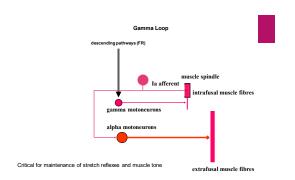


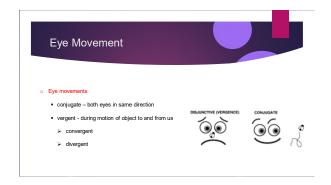












Conjugate Movements LEFT RIGHT Outsmootor Process of Conformation Co

Eye Movement Pathways

Saccades
 Rapid eye movements, conjugated movement, voluntary or involuntary

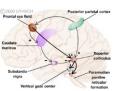
Smooth pursuit movements
 Follows moving visual target, voluntary

Vestibulo-ocular movements
 Initiated by vestibular mechanisms during brief/rapid head movement

Vergence movements
 Adjusts for different viewing distance

Saccadic Eye Movements voluntary and memory-guided saccades reflex orienting saccades

Neurons in the frontal eye field Superior colliculus neurons

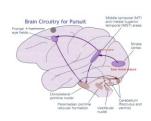

> superior colliculi - information from retina, auditory, and parietal (visual association) area

Correct and send control signals vertical and horizontal gaze centers

 horizontal gaze center – PPRF, abducens lower motor neurons and interneurons

 Vertical gaze center located at RF of the midbrain, lower motor neurons in the oculomotor and trochlear nuclei

Nuclei of the basal ganglion: superior colliculus/caudate/substantia nigra


Smooth Pursuit Movements

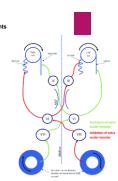
Temporal eye field neurons/ Frontal eye field neurons

Dorsolateral pontine nucleus

Contralateral cerebellum

Medial longitudinal fasciculus : CN III, IV, VI

Vestibulo-Ocular Movements


Vestibular mechanisms during head movement

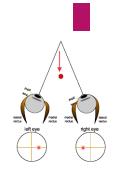
Vestibular Receptors & Vestibular 1* Afferent Neurons

Horizontal Movements: Medial Vestibular Nucleus

Vertical Movements: Superior Vestibular Nucleus

Gaze Stabilization

Vergence Movements


Visual system including visual association cortex

Supraoculomotor nuclei

CN III, Medial rectus muscles

Gaze Shifting

Thank you very much for your attention

