

Somatosensitivity, pain

The role of nervous system

ANTICIPATION

- Energy convertor
 - Signal reception
 - Signal transformation
- Receptor potential
 - Generator potential
- Action potential

http://www.slideshare.net/CsillaEgri/presentations

Receptor/generator and action potential

http://www.slideshare.net/drpsdeb/presentations

- Energy convertor
 - Signal reception
 - Signal transformation
- Receptor potential
 - Generator potential
- Action potential
- Adequate stimulus
- Non adequate stimulus

- **Energy convertor**
 - Signal reception
 - Signal transformation
- Receptor po
 - Generator policy
- Action potentia
- Adequate stimul
- Non adequate stim

Intensity coding

How much?

 Amplitude of receptor potential is transtucted into the frequency of AP

http://www.slideshare.net/CsillaEgri/presentations

Qualitative information

What?

The law of specific nerve energies:

The nature of perception is defined by the pathway over which the sensory information is carried

Labeled line coding define the information about quality

Qualitative information

- Labeled line coding
- Receptive field
- Nerve stimulation mimics receptor stimulation

Receptive fields

Various size and overaly

Small receptive field –
 high resolution

Spatial resolving power increased by lateral inhibition

Receptor adaptation

- The decline of receptor responses in spite of stimulus presence
- Tonic receptors slow adaptation – presence of stimulus, position
- Phasic receptors rapid adaptation – change of stimulus

Mechanoreceptors Receptors Thermoreceptors

- Simple
- Complex
- General
 - Superficial somatosensors

Chemoreceptors

Fotoreceptors

- Deep viscerosensors
- Muscles, tendons, joints proprioceptors
- Special
 - Part of sensory organs

Evolutionary point of view

- The signals indicating potential damage are the most important and the corresponding systems evolved early
 - Pain
 - **Temperature**
- The touch signals have adaptive value and evolved later

Evolutionary point of view

- The signals indicating potential damage are the most survival the correspondiate survival earl mediate survival 1emperature
- The tong-term survival and Long-term adaptive value

Evolutionary point of view

- The signals indicating potential damage are the most survival the correspondiate survival earl mediate survival 1emperature
- Long-term survival adaptive value
- The structure of the receptor, nerve fibers and pathways reflects the evolution

Nerve fibres

Axons from skin	Αα	Аβ	Αδ	С
Axons from muscles	Group I	Ш	Ш	IV
muscles				
Diameter (μm)	13–20	6–12	1–5	0.2-1.5
Speed (m/sec)	80-120	35–75	5–30	0.5–2
Sensory receptors	Proprioceptors of skeletal muscle	Mechanoreceptors of skin	Pain, temperature	Temperature, pain, itch

Viscerosensitivity

- An information from visceral and cardiovascular system
- Linked to the autonomic nervous system
- ✓ Parasympathetic nervous system (VII., IX., X., sacral PNS) The most of information does not reach higher structures than hypothalamus
- _ "Operational information" (blood pressure, pO2, pCO2) The most of information
 - ✓ Sympathetic nervous system _ "Potential danger" (pressure, pain, cold)

Proprioception

- Information from
 - Muscles
 - Tendons
 - Joints
- Important for
 - Precise coordination of movements
 - Overload protection

- Three systems
- (Archispinothalamic)
 - Interconnection of adjacent segments (tr. Spinospinalis)
- Paleospinothalamic
 - tr. Spinoreticularis, tr. Spinotectalis...
- Neospinothalamic
 - tr. Spinothalamicus
- Dorsal column system
 - tr. Spinobulbaris

- Three systems

- Evolutionary old structures have not been replaced by new Dors ones during evolution, but the old has been kept and the
- new added

- Paleospinothalamic
 - Low resolution dull, diffuse pain ("slow pain")
- Neospinothalamic
 - High resolution sharp, localized pain ("fast pain"), temperature
 - Low resolution touch
- Dorsal column system
 - High resolution fine touch

- Paleospinothalamic
 - Low resolution dull, diffuse pain ("slow pain")
- Neospinothalamic
 - High resolution sharp, localized pain ("fast pain"), temperature
 - Low resolution touch
- Dorsal column system
 - High resolution fine touch

Paleospinothalamic system

- Tr. Spinoreticularis, spinotectalis...
- Evolved before neocortex
- The primary connection to the subcortical structures
- Basic defensive reactions and reflexes vegetative response, reflex locomotion - opto-acoustic reflexes etc.
- Secondarily connected to cortex (after its evolution; tr. Spinoreticulo-thalamicus), but this system has a small resolutions – dull diffuse pain
- This tract is not designed for "such a powerful processor as neocortex"
- Approximately half of the fibers cross the midline

Neospinothalamic system

- Tr. Spinothalamicus
- Younger structure primarily connected to neocortex
- "High capacity/resolution"
- Detail information about pain stimuli (sharp, localized pain)
- Information about temperature
- Crude touch sensation
- The fibers cross midline at the level of entry segment

Dorsal column system

- Tr. Spinobulbaris
- The youngest system
- High capacity
- Tactile sensation
- Vibration
- Fine motor control
- Better object recognition
- Adaptive value
- The fibers cross midline at the level of medulla oblongata

Dermatoms

 Somatotopic organization somatosensitve nerves

http://www.slideshare.net/drpsdeb/presentations

http://www.slideshare.net/CsillaEgri/presentations

© 2000 UTHSCH

Trigeminal system

- Spinal TS
 - Pain, temperature
- Main sensory TS
 - Touch, proprioception

Opthalmic

Table I The Sensory Modalities Represented by the Somatosensory Systems								
Modality	Sub Modality	Sub-Sub Modality	Somatosensory Pathway (Body)	Somatosensory Pathway (Face)				
	sharp cutting pain		Neospinothalamic	- Spinal Trigeminal				
Pain	dull burning pain		Paleospinothalamic					
	deep aching pain		Archispinothalamic					
Temperature	warm/hot		Paleospinothalamic					
remperature	cool/cold		Neospinothalamic					
	itch/tickle & crude touch		Paleospinothalamic					
	discriminative touch	touch		Main Sensory Trigeminal				
Touch		pressure						
		flutter						
		vibration						
	Position: Static Forces	muscle length						
		muscle tension	Tr. spinobulbaris					
		joint pressure	·					
Proprioception	Movement: Dynamic Forces	muscle length						
		muscle tension						
		joint pressure						
		joint angle						

http://neuroscience.uth.tmc.edu/s2/chapter02.html

Thalamus and neocortex

- Almost all the afferent information gated in the thalamus
- Olfaction is an exception
- Bilateral connections between neocortex and thalamus

Neocortex

- Somatotopic organization
- Cortical magnification

http://www.shadmehrlab.org/Courses/physfound files/wang 5.pdf

Pain

- Distressing feeling associated with real or potential tissue damage
- Sensor x psychological component
- Physiological pain (nociceptor activation)
- Pathological pain (not mediated by nociceptors)
- Acute (up to 6months) "activiting"
- Chronic (more than 6 months) "devating"

https://www.cheatography.com/uploads/davidpol_1460561912_Pain_Scale__Arvin61r58.png

Descendent pathways modulating pain

- Somatosemcoric cortex
- Hypotalamus
- Periaquaeductal gray
- Nuclei raphe

Pain modulation on the spinal level

Gate control theory of pain

https://en.wikipedia.org/wiki/Gate control theory

Referred pain

http://www.slideshare.net/drpsdeb/presentations

Phantom limb pain

http://www.slideshare.net/drpsdeb/presentations

#