

Acute Respiratory Distress Syndrome (ARDS)

Pavel Suk

Intensive care- practice (aVLAM9X1c)

Learning outcomes

Student learns ARDS causes and symptoms

Student understands ARDS pathophysiology

Student knows basics of ARDS treatment

ARDS definition

-syndrome caused by various diseases

definition: acute diffuse inflammatory lung injury

Geriteria:

-acute = onset over 1 week or less

-bilateral lung opacities

 $hypoxemia: PaO_2/FiO_2$ (P/F) ratio < 300 mmHg (with PEEP/CPAP at least 5 cm H₂0)

-not explained by cardiac failure or fluid overload

severity	mild	moderate	severe
PaO ₂ /FiO ₂ (mmHg)	200-300	100-200	< 100
mortality	27 %	32 %	45 %

paO₂ 8.3 kPa; FiO₂ 0.6 1 kPa = 7.5 mmHg P/F = 8.3/0.6*7.5 = 104

Underlying causes of ARDS

pneumonia (bacterial, viral, ...) sepsis aspiration -pancreatitis severe trauma (lung contusion, fat embolism) shock states transfusion-related lung injury (plasma), massive transfusions **-***r*are: inhalation injury, drugs (amiodarone), near drowning

Pathophysiology

inflammatory lung injury → ↑ pulmonary capillary permeability
 edema formation (interstitial, alveolar)
 extravasation of neutrophils and macrophages → toxic mediators
 loss of alveolar surfactant

Consequences:
 impaired diffusion (mainly O₂)
 V/Q mismatch (R-L shunt)

alveolar collapse

-pulmonary hypertension (25 %)

hypoxemia
↓ lung compliance
hypercapnia

 $M \vdash D$

Symptoms and diagnostics

influence by underlying disease
dyspnea, tachypnea, cyanosis
auscultation: inspiratory crackles,
bronchial breat sounds

ABG: hypoxemia, initial hypocapnia, later hypercapnia
Chest X-ray– difuse billateral lung consolidation

 $M \vdash D$

Chest CT: lung consolidations mainly in dependent parts (the lowest part of the lung in relation to gravity) Gattinoni L, <u>Critical Care</u> 24: 54 (2020)

Echocardiography: exclusion of cardiac cause, right heart failure

MUNI MED

-management of hypoxemia

mild cases: oxygen, high-flow nasal oxygen
 NIV – limited application
 mechanical ventilation pro moderate/severe cases (on next slide)

⊖causal treatment:

antibiotic in case of bacterial pneumonia or sepsis, ...

-restrictive fluid strategy

fluid overload worsens the function inflammatory lungs

MUNI MED

Lung ventilation strategy for ARDS

aim: to provide acceptable blood gases while minimizing ventilatorinduced lung injury (lung protective ventilation)

the lowest FiO_2 to maintain $SaO_2 88 - 95 \%$

limit tidal volume to 6-8 ml/kg of ideal body weight higher PEEP to keep lungs aeriated (10 – 15 cm H₂O) keep driving pressure ≤ 15 cmH₂O (peak pressure ≤ 30 cmH₂O) tolerate hypercapnia – maintain pH > 7,20-7,25 increase respiratory rate, not tidal volume

Rescue measures

deep sedation or muscle paralysis to avoid patient-ventilator dyssynchrony

Corticoids (methylprednisolone 1-2 mg/kg/day) – uncertain severe COVID-19 cases: dexamethasone 6 mg/den

prone position

a mainly for severe cases with PaO₂/FiO₂ < 100 – 150 mmHg

improved distribution of ventilation and perfusion

 \rightarrow lung compression by the heart

 \rightarrow improved oxygenation in 2/3 of patients, \downarrow mortality

extracorporeal membrane oxygenation (ECMO)

 $\Lambda/I \vdash I$

Take home message

ARDS is a syndrome with different causes

-main symptom is hypoxemia

Secure acceptable blood gases while minimizing ventilatorinduced lung injury (lung protective ventilation)

treatment of the underlying cause is necessary

MUNI Med

MUNI MED

Lékařská fakulta Masarykovy univerzity 2021