MUNI MED

> CARDIAC MECHANICS HEART AS A PUMP CARDIAC CYCLE HEART FAILURE

Department of Physiology

Homeometric: Frequency effect

Fuyu Kobirumaki-Shimozawa et al., J Physiol Sci (2014) 64:221–232

MED

Henry Pickering Bowditch (1840 – 1911)

MUNI

MED

HOMEOMETRIC AUTOREGULATION (FREQUENCY EFFECT)

During increasing HR (stimulation frequency) the force of developed contraction rises Ratio between intra- and extracellular calcium concentrations increases

MUNI

MED

Skeletal, cardiac and smooth muscle – action potential and contraction

CARDIAC RESERVE = maximal CO / resting CO

CORONARY RESERVE = maximal CF / resting CF **3,5**

CHRONOTROPIC RESERVE = maximal HR / resting HR **3 - 5**

VOLUME RESERVE = maximal SV / resting SV **1,5**

CO = cardiac output CF = coronary flow HR = heart rate SV = stroke volume

 $M \cup N$

MED

4 - 7

CARDIAC RESERVE

9

IMPORTANT TERMS

Length-tension relationship (curve)

Minimal length l₀

Passive, active, total force

Optimal length

Isometric, isotonic, auxotonic contraction

Autoregulation of contraction – heterometric (Starling) Preload, afterload

Passive tension, active tension, isometric contraction, isotonic contraction, auxotonic contraction

MED

<u>P</u> = <u>T</u> . 2h . r ^{−1}	Isovolumic contraction : T rises up, valves closed – increase in P
<u>P</u> = T.2 <u>h</u> .r ^{−1}	Ejection: r decreases, h rises, thus P increases (even at the same T)
P = T . 2h . r ^{−1}	Isovolumic relaxation : T decreases, valves closed – decrease in P
P = <u>T</u> . 2h <u>. r -1</u>	Ventricular filling: r and T rise, P first falls down, then rises up (length/tension relationship)

INCREASED PRELOAD

INCREASED AFTERLOAD

MODEL

INCREASED PRELOAD AND AFTERLOAD

MODEL

HEART SOUNDS

Caused by vibration of various anatomical structures and event. blood:

• Closure and stretching of valves

• Isovolumic contraction of heart muscle (papillary muscles, tendons)

 $M \vdash D$

• Turbulent blood flow

MURMURS – pathological phenomena based on turbulent blood flow

1. SYSTOLIC

- Stenosis aortal, pulmonary (1)
- Regurgitation mitral, tricuspidal (2)

2. DIASTOLIC

- Stenosis mitral, tricuspidal (3)
- Regurgitation aortal, pulmonary (4)

3. SUSTAINED:

• Defects of septum

MED

POLYGRAPHY (polygram)

20 Marie Nováková, Department of Physiology

HEART FAILURE = loss of cardiac reserve

The heart is not able pump sufficient amount of blood into periphery <u>at normal venous return</u>.

SYMPTOMS

fatigue, oedemas, venostasis, dyspnoea, cyanosis

ACUTE x CHRONIC.

COMPENSATED x DECOMPENSATED.

MOST FREQUENT CAUSES:

• Severe arrhythmias

21

 Overload – volume (aortal insufficiency, a-v shunts) or pressure (hypertension and aortal stenosis – <u>left overload</u>, pulmonary hypertension and stenosis of pulmonary valve – <u>right overload</u>)
 Cardiomyopathy

 $\mathbb{M} \vdash \mathbb{D}$

HEART FAILURE - COMPENSATION

BAROREFLEX

Physiological role: compensation of decrease in minimal volume of circulating fluids Signal: BP decrease (orthostase, work vasodilatation)

Sensor: baroreceptors

Response: activation of SAS (increased HR, inotropy, BP)

Pathological signal: long-lasting decrease of BP due to heart insufficiency **Results:** increased energy outcome – **vicious circle**

ACTIVATION OF RAAS

Physiological role: compensation of loss of circulating fluids (bleeding) Signal: decrease in renal perfusion Sensor: juxtaglomerular system of kidney Response: BP increase (angiotenzin II.), water retention (aldosteron) Pathological signal: decrease in renal perfusion due to heart insufficiency Results: increased preload and afterload, increased energy outcome – vicious circle

Ca ²⁺ - antagonists

 β – sympatolytics

angiotenzin-converting enzyme inhibitors (AT II. receptors)

DILATATION (STARLING PRINCIPLE)

Physiological role: compensation of momentary right-left differences
Signal: orthostase, deep breathing, beginning of exercise
Pathological signal: continual blood stasis in the heart
Results: increased energy outcome – vicious circle

HYPERTROPHY

Physiological role: preservation of energetically demanding tension of ventricular wall Signal: P = s . 2 h / r, intermittent BP increase (athletes heart) Response: concentric remodelling Pathological signal: continual increase of preload or afterload

Results: worsening of oxygenation, fibrotisation – vicious circle

diuretics

cardiac glycosides (digitalis)