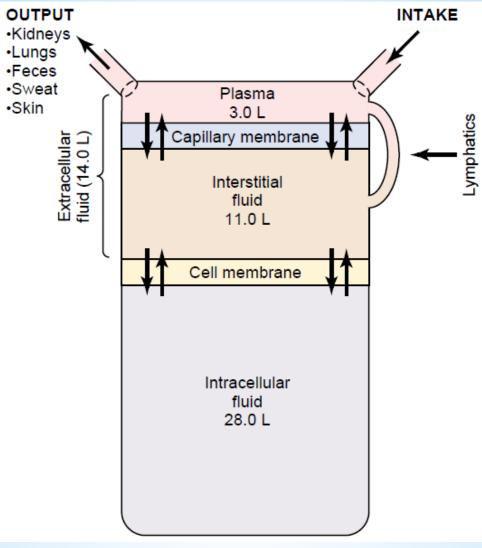
Kidneys in regulation of homeostasis

Assoc. Prof. MUDr. Markéta Bébarová, Ph.D.

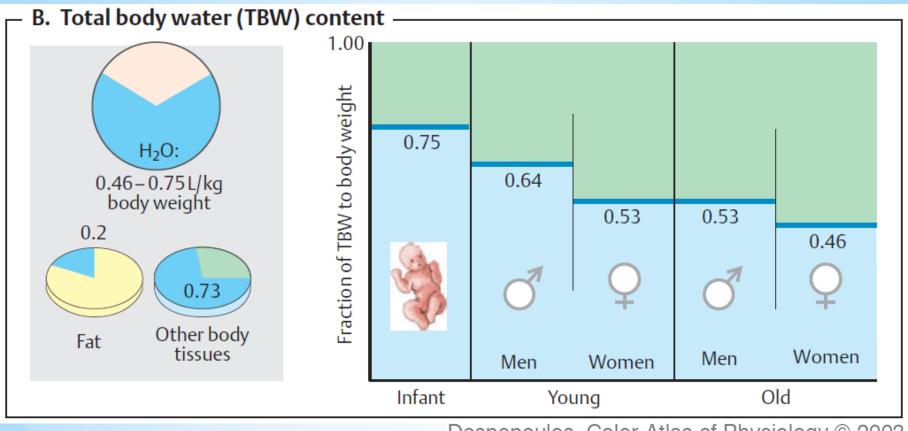
Department of Physiology Faculty of Medicine, Masaryk University

Homeostasis

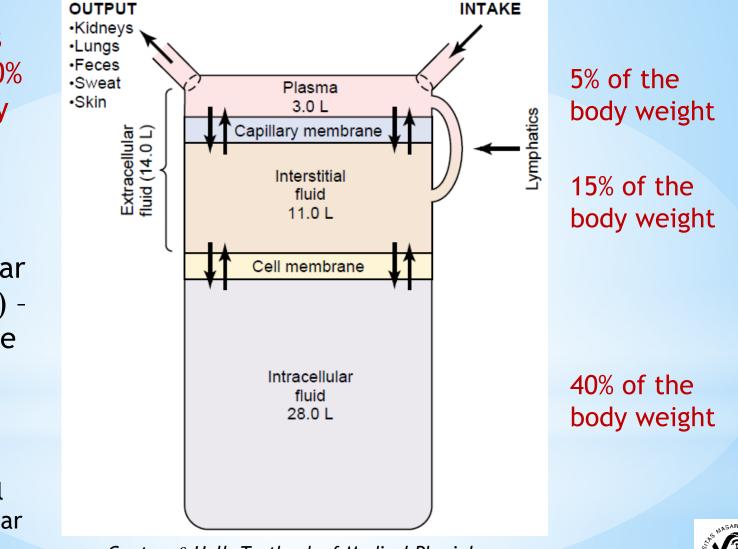
= maintainance of stable conditions in the internal body environment


Maintainance of Constant Volume and Composition of Body Fluids Maintainance of Acid-Base Balance

Constant Volume and Composition of Body Fluids - Regulation by Kidneys -



Body fluids occupy ~60% of the body weight.



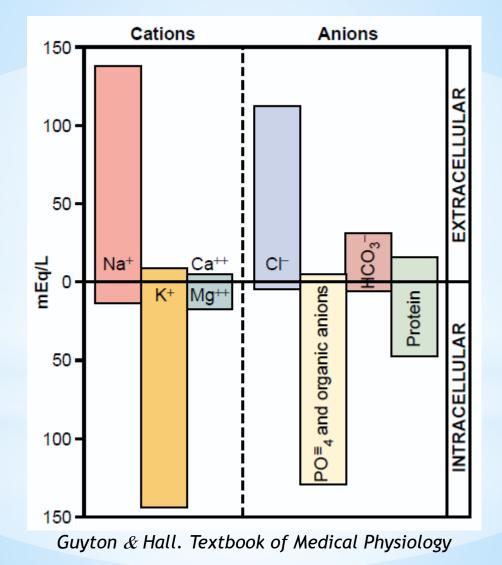
Despopoulos, Color Atlas of Physiology © 2003

Body fluids occupy ~60% of the body weight.

Transcellular fluid (1-2 l) special type of ECF. (peritoneal, pericardial, synovial, cerebrospinal and intraocular fluid)

Guyton & Hall. Textbook of Medical Physiology

Balance between Input and Output of Fluid


Daily Intake and Output of Water (ml/day)

Intake	Normal	Prolonged, Heavy Exercise
Fluids ingested	2100	?
From metabolism	200	200
Total intake	2300	?
Output		
Insensible—skin	350	350
Insensible—lungs	350	650
Sweat	100	5000
Feces	100	100
Urine	1400	500
Total output	2300	6600

Guyton & Hall. Textbook of Medical Physiology

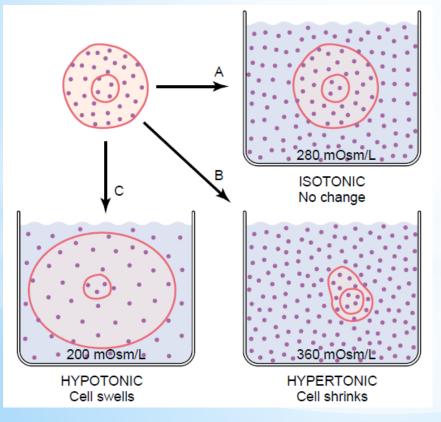
Body Fluids – Composition ECF vs. ICF

Body Fluids – Composition

plasma vs. ISF

Plasma (m0sm/L H ₂ 0)	Interstitial (m0sm/L H ₂ 0)
142	139
4.2	4.0
1.3	1.2
0.8	0.7
108	108
24	28.3
2	2
0.5	0.5
	2
0.2	0.2
1.2	1.2
5.6	5.6
1.2	0.2
4	4
4.8	3.9
	$ \begin{array}{c} 142\\ 4.2\\ 1.3\\ 0.8\\ 108\\ 24\\ 2\\ 0.5\\ \end{array} $ $ \begin{array}{c} 2\\ 0.2\\ 1.2\\ \end{array} $ $ \begin{array}{c} 5.6\\ 1.2\\ 4\\ \end{array} $

Guyton & Hall. Textbook of Medical Physiology


Body Fluids – Composition

osmolality

285 mosm/kg H₂O

↑ NaCl intake, loss of water \rightarrow water leaves cells (shrinking of cells)

↓ NaCl intake, \uparrow water input → water sucked into cells by osmosis (cell edema)

Guyton & Hall. Textbook of Medical Physiology.

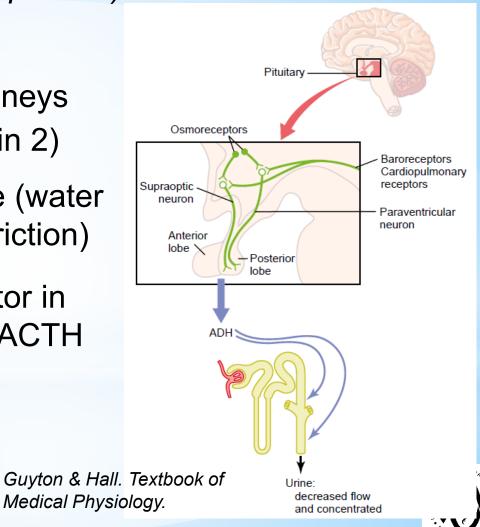
Body Fluids – Composition

osmolality

285 mosm/kg H₂O

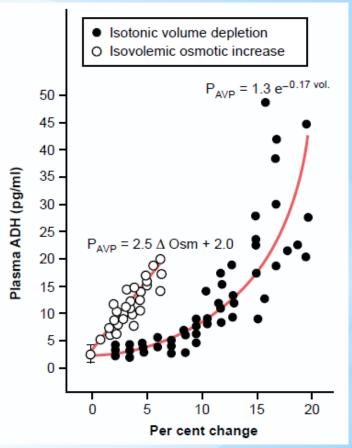
- ↑ NaCl intake, loss of water \rightarrow water leaves cells (shrinking of cells)
- ↓ NaCl intake, \uparrow water input → water sucked into cells by osmosis (cell edema)

Precise regulation of osmolality of ESF is necessary!


- osmoreceptors
- kidneys (target organ for the action of hormones below)
- antidiuretic hormone
- aldosteron
- natriuretic peptides

Antidiuretic Hormone (vasopressin)

- effects:


- →water reabsorption in kidneys (collecting duct, aquaporin 2)
- → control of blood pressure (water reabsorption, vasoconstriction)
- →↑ glycogenolysis, mediator in the brain, ↑ secretion of ACTH in adenohypophysis

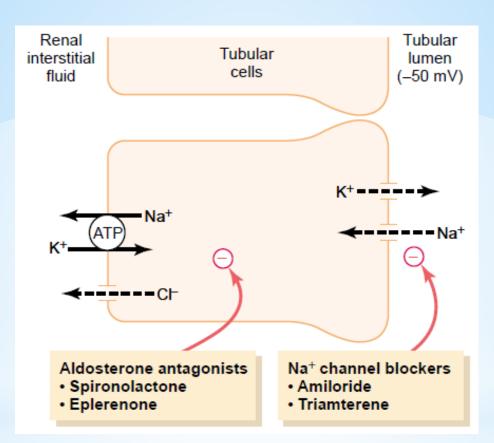
Antidiuretic Hormone (vasopressin)

- regulation of secretion:

- ↑ osmolality
- \downarrow volume of ECF
- pain, emotions, stress (surgical), physical exertion; standing
- nausea, vomitting
- angiotensine II
- morphin, nicotine, barbiturates, ...
- \downarrow osmolality, \uparrow volume of ECF
 - alcohol; antagonists of opioids

Guyton & Hall. Textbook of Medical Physiology.

Antidiuretic Hormone (vasopressin)


- pathology:
 - ↑ SIADH
 - ↓ diabetes insipidus

- the most important steroid with the mineralocorticoid effect
- mechanism of action:
 - binding to the mineralocorticoid receptor \rightarrow binding of the hormone-receptor complex to DNA \rightarrow mRNA \rightarrow synthesis of proteins:
 - namely Na⁺/K⁺-ATPase
 - 1 number of amiloride-inhibited Na⁺-channels in the membrane of target cells

Start of the effect even 10 – 30 min after release of the hormone!

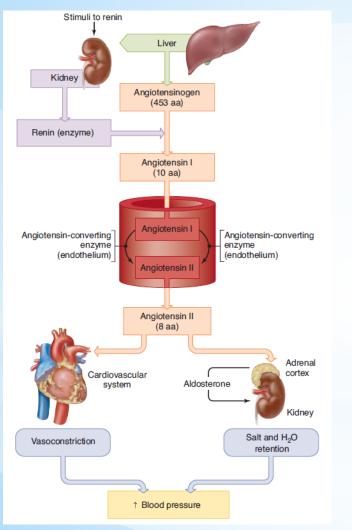
Guyton & Hall. Textbook of Medical Physiology

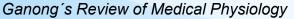
- the most important steroid with the mineralocorticoid effect
- mechanism of action:
 - binding to the mineralocorticoid receptor \rightarrow binding of the hormone-receptor complex to DNA \rightarrow mRNA \rightarrow synthesis of proteins:
 - namely Na⁺/K⁺-ATPase
 - 1 number of amiloride-inhibited Na⁺-channels in the membrane of target cells
 - Activity of H⁺-pump in collecting ducts of the renal cortex
 - Activity of Na⁺/H⁺-antiport in both distal and proximal parts of nephrons

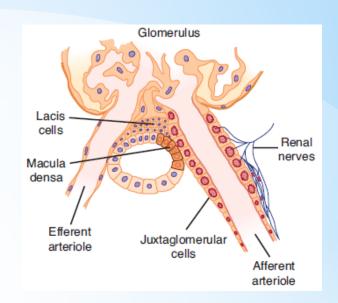
Start of the effect even 10 – 30 min after release of the hormone!

- the most important steroid with the mineralocorticoid effect

- effects:


→ \uparrow Na⁺ reabsorption from urine, sweat, saliva, gastric juice → \uparrow K⁺ urine excretion, \uparrow acidity of urine (exchange for Na⁺) → \uparrow K⁺ content and \downarrow Na⁺ content in muscle and brain cells


- regulation of its secretion:


- ACTH from the adenohypophysis (transient effect)
- direct stimulatory effect of ↑ plasmatic concentration of K⁺ (even a small change even after a meal rich for K⁺
 fruit, vegetable) and ↓ Na⁺ (only a big change)
- renin-angiotensine-aldosteron system

Humoral Regulation of Body Fluids Renin-Angiotensine-Aldosteron System

- the most important steroid with the mineralocorticoid effect
- regulation of its secretion:
 - ACTH from the adenohypophysis (a transient effect)
 - direct stimulatory effect of ↑ plasmatic concentration of K⁺ (even a small change even after a meal rich for K⁺
 fruit, vegetable) and ↓ Na⁺ (only a big change)
 - renin-angiotensine-aldosteron system
 - atrial natriuretic peptide (inhibition of renin secretion, ↓ reactivity of *zona glomerulosa* to angiotensine II)
 - other hormones of adenohypophysis (besides ACTH; maintenance of reactivity of *zona glomerulosa*)

Humoral Regulation of Body Fluids Aldosteron - Pathology

Primary hyperaldosteronism (Conn's syndrome)

- tumors of adrenal cortex which secretes aldosteron
- \rightarrow heavy K⁺ depletion
- \rightarrow hypertension
- → ECF expansion (without edemas, without marked hypernatremia – redundant salts released by the so called escape phenomena)
- \rightarrow at a prolonged K⁺ depletion:
 - \rightarrow renal damage \rightarrow polyuria (the hypocalemic nephropathy) \rightarrow muscle weekness
 - →metabolic alkalosis → \downarrow plasmatic concentration of Ca²⁺ → latent or fully developed tetany
 - →glucose intolerance

Humoral Regulation of Body Fluids Aldosteron - Pathology

Primary hyperaldosteronism (Conn's syndrome)

tumors of adrenal cortex which secretes aldosteron

Secondary hyperaldosteronism

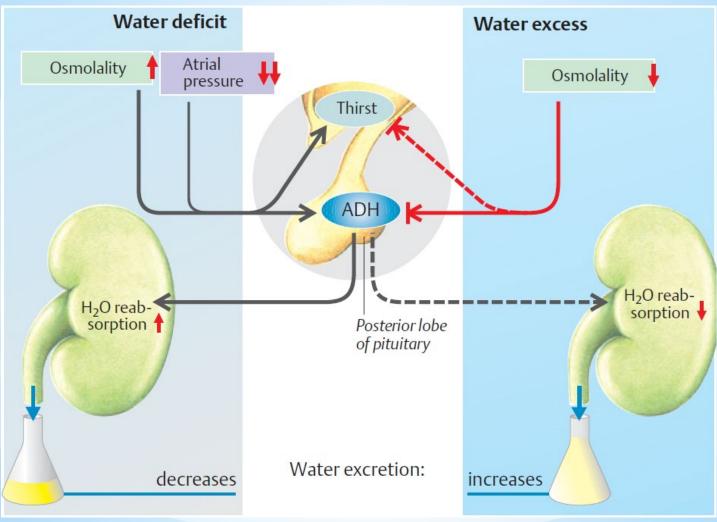
 patients with the congestive heart failure, nephrosis, liver cirhosis, renal artery constriction, hypertension, with the salt-losing form of adrenogenital syndrome

Hyporeninemic hypoaldosteronism

Pseudohypoaldosteronism

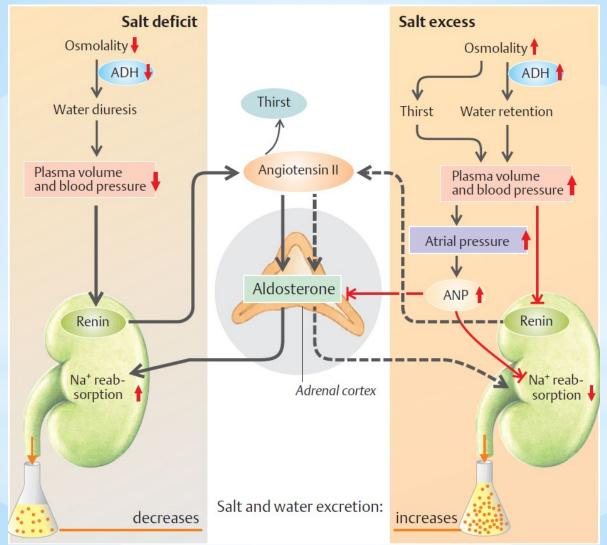
Humoral Regulation of Body Fluids Atrial Natriuretic Peptide

- one of natriuretic peptides (BNP cardiac ventricles, CNP brain)
- receptors (ANPR-A the highest affinity to ANP, ANPR-B CNP, ANPR-C all NP)
- short half-life
- secreted by atrial cardiomyocytes, found also in the brain

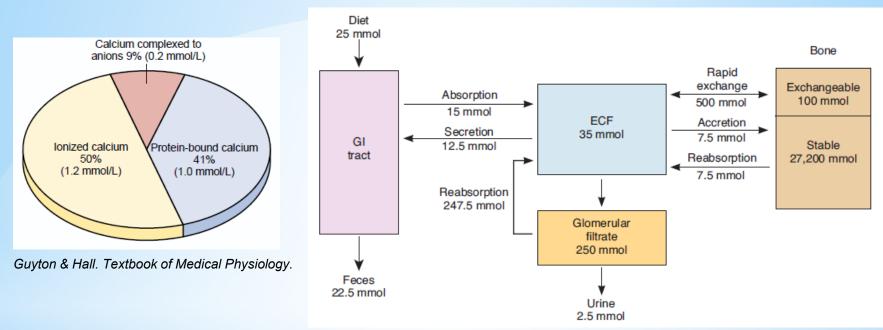

Humoral Regulation of Body Fluids Atrial Natriuretic Peptide

- one of natriuretic peptides (BNP cardiac ventricles, CNP brain)
- effects (through \uparrow cGMP): $\rightarrow \downarrow$ BP (also through the brain stem)
 - → natriuresis (1. ↑ GFR increased area for the filtration through relaxation of mesangial cells, 2. ↑ Na⁺ excretion – decrease tubular Na⁺ reabsorption)
 - → ↓ reactivity of vascular smooth muscles for vasocontrictive substances
 - → inhibition of renin secretion, ↓ reactivity of zona glomerulosa for stimuli ↑ aldosteron secretion
 - \rightarrow inhibition of ADH secretion $\rightarrow \uparrow$ water excretion
- regulation of its secretion:
 - ↑ ↑ ECF volume (atrial cells' stretch at higher atrial filling)
 - \downarrow CVP at orthostasis

Water Homeostasis


water intoxication

Despopoulos, Color Atlas of Physiology © 2003 Thieme

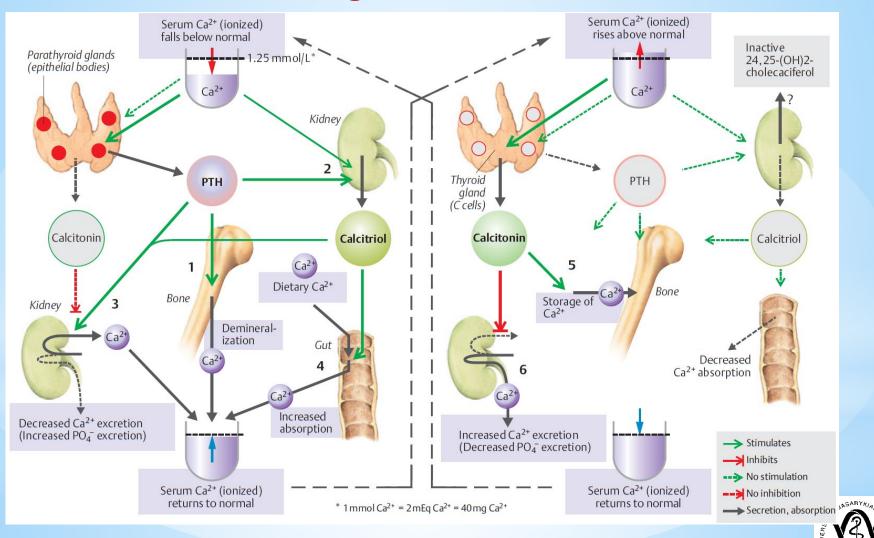

Salt Homeostasis

Despopoulos, Color Atlas of Physiology © 2003 Thieme

Calcium in the Body

Ganong's Review of Medical Physiology

hypocalcemia hypercalcemia



Humoral Regulation of Body Fluids Hormonal Regulation of Calcemia

Parathormone Vitamin D Calcitonin

Hormonal Regulation of Calcemia

Despopoulos, Color Atlas of Physiology © 2003 Thieme

Acid-Base Balance - Regulation by Kidneys -

acidsubstance releasing H+ (e.g. $H_2CO_3 \rightarrow H^+ + HCO_3^-$)basesubstance binding H+ (e.g. $HCO_3^- + H^+ \rightarrow H_2CO_3$; proteins)

[H+]

- influences activity of almost all enzymatic systems
 - very low compared to the concentration of other ions;
 [H⁺] = 40 nEq/l but for example [Na⁺] = 142 mEq/l
 - thus, its changes has to be much smaller (3-5 nEg/l)
 ⇒ precise regulation of [H⁺] is necessary!

Since [H⁺] is a very small number, its negative logarhithm is used:

 $pH = -log [H^+] = -log 0.000 000 040 = 7.4$

The value of pH is thus inversely proportional to $[H^+]$. Change of pH by 1 ~ change of $[H^+]$ 10-times bigger!

Physiological value of pH:

- arterial blood pH = 7.4
- venous blood pH = 7.35 (CO₂ from tissues)
- ICF pH = 6.0 7.4 (according to the cell type)
- urine pH = 4.5 8.0

The value of pH 6.8 - 8.0 can be survived for several hours!

Acid-base balance is regulated by:

1) Buffers

- fast regulation (seconds)
- pH changes attenuated by binding and release of H⁺:
 buffer + H⁺ ←→ H buffer

 \uparrow [H⁺] direction to the right favoured till free buffer is available

 \downarrow [H⁺] direction to the left favoured, H⁺ released

2) Lungs

- fast regulation (minutes even hours)
- elimination of CO_2 from the body $(H_2CO_3 \rightarrow H_2O + CO_2)$

3) Kidneys

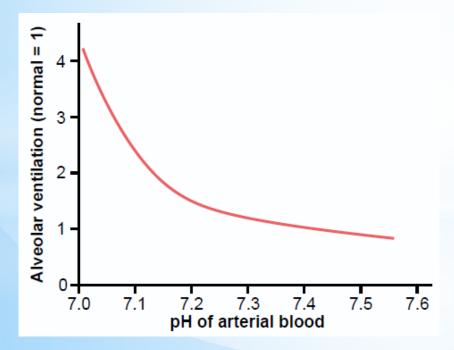
- slower regulation (hours even days) but the most powerful
- elimination of acids and bases from the body

Regulation of Acid-Base Balance by Buffers

1) Bicarbonate buffer

- the most important buffer system
- weak acid H_2CO_3 and its salt NaHCO₃ + Na⁺ CO₂ + $H_2O \iff H_2CO_3 \iff H^+ + HCO_3^-$
- the most powerful (despite not expected to be so powerful, pK = 6.1)

2) Phosphate buffer

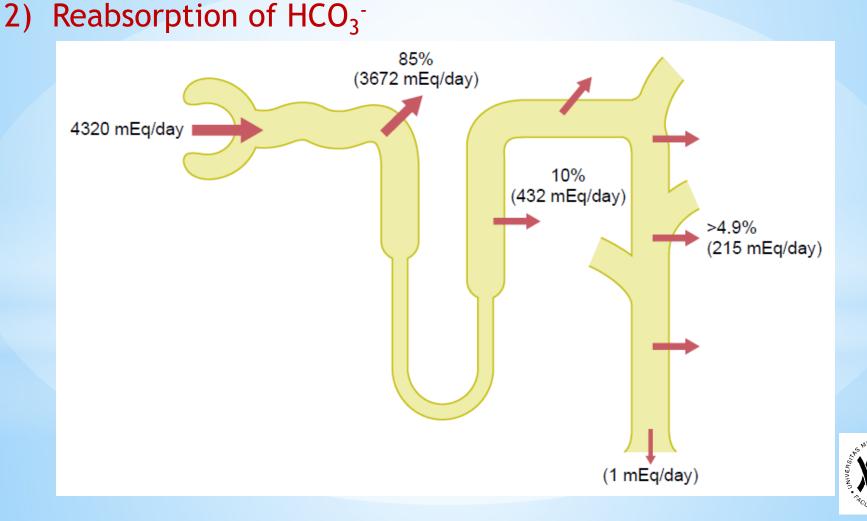

- an important buffer system of the renal tubular fluid and of the intracellular fluid (high concentration + pH nearer to pK = 6.8)
- $H_2PO_4^-$, HPO_4^{2-}
- 3) Protein buffer
 - an important buffer of an important buffer system of (conc. + pK)
 60 70% of the buffer capacity of body fluids sites in the cells and is dependent on proteins!

Acid-Base Balance and its Regulation Regulation of Acid-Base Balance by Lungs

by the hyper- or hypoventilation

pH = 6.1 + log
$$\frac{HCO_3^{-1}}{0.03 \times P_{CO2}}$$

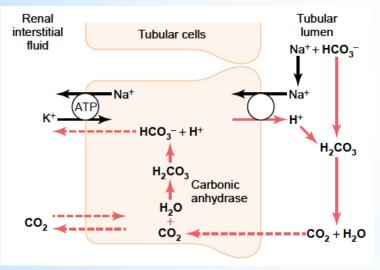
 $\uparrow [H^+] \rightarrow \uparrow \text{Alveolar ventilation}$ $\ominus \uparrow \qquad \qquad \downarrow \\ PCO_2$



Acid-Base Balance and its Regulation Regulation of Acid-Base Balance by Kidneys

- by excretion of acid or alkalic urine
- a high amount of HCO₃⁻ still filtered in the glomerulus GFR 180 l/day, [HCO₃⁻]_{plasma} 24 mEq/l → 4320 mEq HCO₃⁻ filtered per day - almost all ordinarily reabsorbed
- a high amount of H⁺ still secreted in renal tubules about 80 mEq of non-volatile acids are formed in the course of metabolic processes per day - have to be excreted by kidneys
- filtered HCO₃⁻ / secreted H⁺

Acid-Base Balance and its Regulation
 Regulation of Acid-Base Balance by Kidneys
 Secretion of H⁺
 Dechagration of UCO :



Regulation of Acid-Base Balance by Kidneys

1) Secretion of H⁺

2) Reabsorption of HCO₃⁻

 in the proximal tubule, thick loop of Henle and at the beginning of the distal tubule

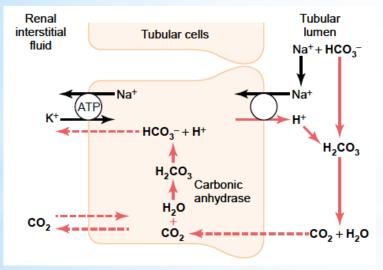
Na⁺/H⁺-antiport

>90% HCO₃⁻ reabsorbed - only a slight acidification of the urine!

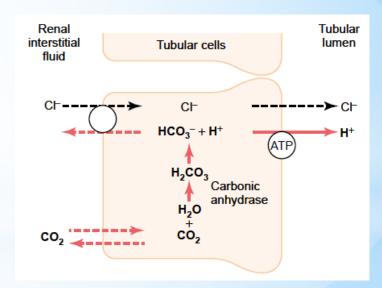
Reabsorption of HCO₃⁻ across the basolateral membrane facilitated by:

- Na⁺-HCO₃⁻ co-transport (the proximal tubule)
- Cl⁻-HCO₃⁻ exchanger

(the end of proximal tubule and the following parts of tubulus except for the thin loop of Henle)



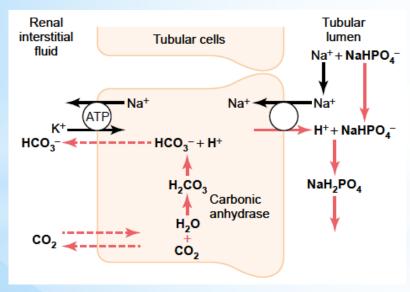
Regulation of Acid-Base Balance by Kidneys


1) Secretion of H⁺

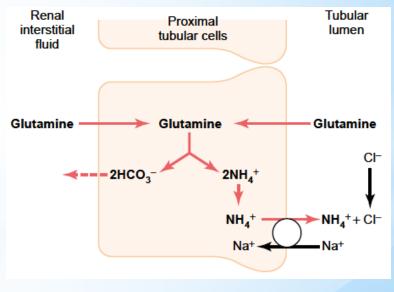
2) Reabsorption of HCO₃⁻

 in the proximal tubule, thick loop of Henle and at the beginning of the distal tubule

 in the final part of distal tubule and in the collecting duct

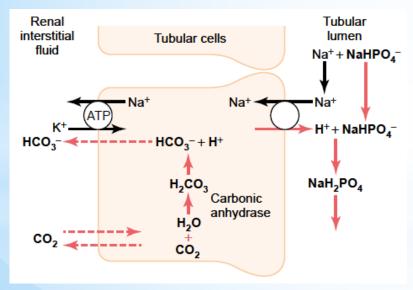


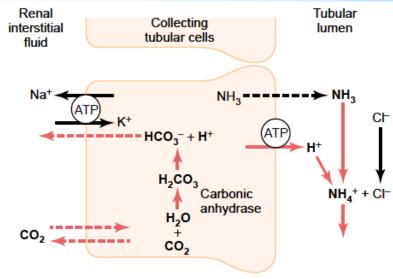
Na⁺/H⁺-antiport >90% HCO₃⁻ reabsorbed - only a slight acidification of the urine! primary active transport of H⁺ (intercalated cells) acidification of urine



Regulation of Acid-Base Balance by Kidneys

- 1) Secretion of H⁺
- 2) Reabsorption of HCO₃⁻
- 3) Production of HCO₃⁻ de novo
 - Phosphate buffer $(HPO_4^{2-}, H_2PO_4^{-})$

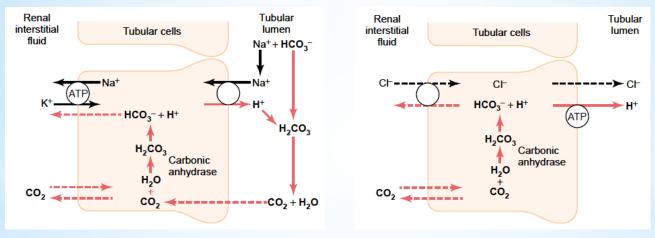

Ammonium buffer (NH₃, NH₄⁺)


 HPO_4^{2-} and $H_2PO_4^{-}$ are reabsorbed less than water \Rightarrow their concentration in the tubular fluid gradually rises NH₄⁺ originates from glutamine - the proximal tubule, thick ascending loop of Henle and distal tubule

Regulation of Acid-Base Balance by Kidneys

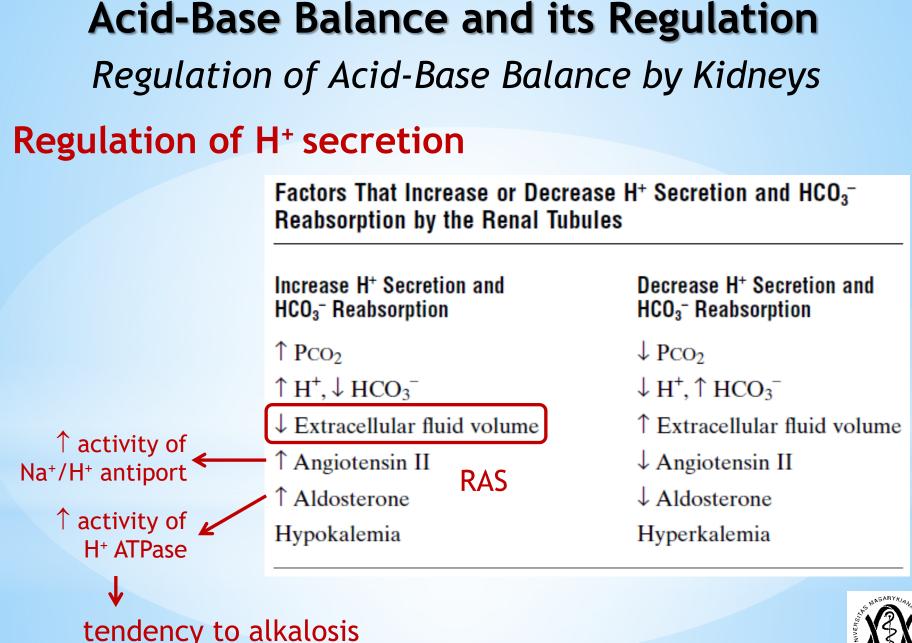
- 1) Secretion of H⁺
- 2) Reabsorption of HCO₃⁻
- 3) Produkce nového HCO₃-
 - Phosphate buffer $(HPO_4^{2-}, H_2PO_4^{-})$

HPO_4^{2-} and $H_2PO_4^{-}$ are reabsorbed less than water \Rightarrow their concentration in the tubular fluid gradually rises


• Ammonium buffer (NH_3 , NH_4^+)

the collecting duct (permeable for NH_3 but far less for NH_4^+ - excreted by urine) 50% of H⁺ secretion and HCO_3^- formed *de novo*!

Acid-Base Balance and its Regulation Regulation of Acid-Base Balance by Kidneys

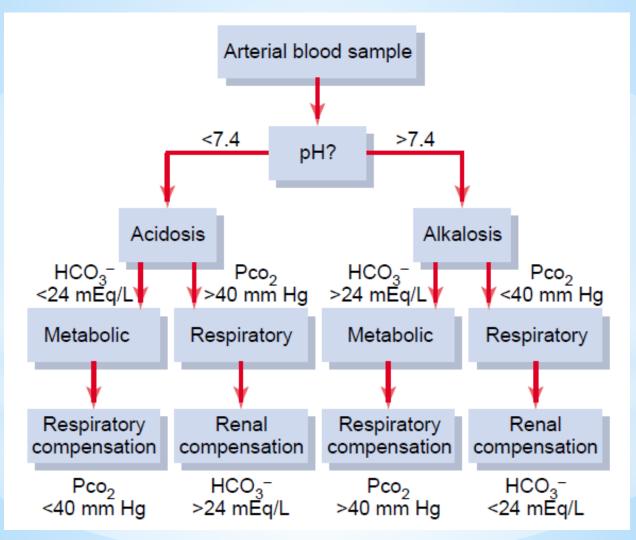

Regulation of H⁺ secretion

 ↑ ↑ pCO₂ in ECF (respiratory acidosis; direct stimulation due to ↑ formation of H⁺ in tubular cells)

- \downarrow **pH in ECF** (respiratory or metabolic acidosis)
- **f secretion of aldosteron** (stimulates active H⁺ secretion in intercalated cells of collecting ducts, also through Na⁺/H⁺ antiport; Conn´s syndrome - alkalosis)

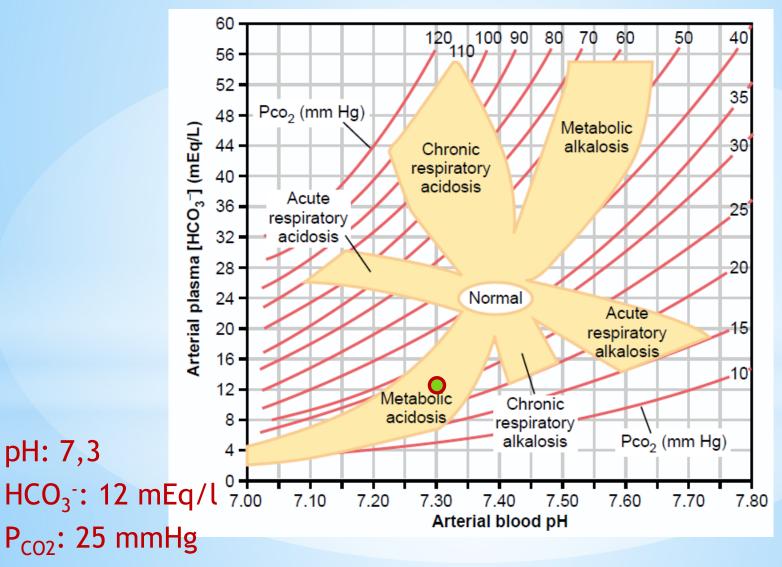
Acid-Base Balance and its Regulation Regulation of Acid-Base Balance by Kidneys Acidosis - correction by kidneys

$$PH = 6.1 + \log \frac{HCO_3^{-1}}{0.03 \times P_{CO2}}$$


- metabolic acidosis: due to ↓ HCO₃ renal correction : ↓ HCO₃- in ECF → ↓ filtered HCO₃- → complete reabsorption of HCO₃- + its formation *de novo* (HCO₃- not excreted) + ↑ H⁺ excretion → pH normalization
- respiratory acidosis: due to $\uparrow P_{CO2}$ (hypoventilation) renal correction: $\uparrow P_{CO2}$ in ECF $\rightarrow \uparrow P_{CO2}$ in tubular cells \rightarrow \uparrow formation of H⁺ and HCO₃⁻ in tubular cells $\rightarrow \uparrow$ H⁺ secretion + \uparrow HCO₃⁻ reabsorption \rightarrow pH normalization

Acid-Base Balance and its Regulation Regulation of Acid-Base Balance by Kidneys Alkalosis - correction by kidneys

↑ pH = 6.1 + log
$$\frac{\text{HCO}_3^-}{0.03 \times P_{\text{CO2}}}$$
 ↑


- metabolic alkalosis: due to ↑ HCO₃⁻
 renal correction: ↑ HCO₃⁻ in ECF → ↑ filtered HCO₃⁻ → incomplete HCO₃⁻ reabsorption (lack of H+) → ↑ HCO₃⁻
 excretion by urine → pH normalization
- respiratory alkalosis : due to $\downarrow P_{CO2}$ (hyperventilation) renal correction: $\downarrow P_{CO2}$ in ECF $\rightarrow \downarrow P_{CO2}$ in tubular cells $\rightarrow \downarrow$ formation of H⁺ and HCO₃⁻ in tubular cells $\rightarrow \downarrow H^+$ secretion + $\downarrow HCO_3^-$ reabsorption \rightarrow pH normalization

Acid-Base Balance and its Regulation Diagnostics

Acid-Base Balance and its Regulation Diagnostics

