# SKELETAL, CARDIAC, AND SMOOTH MUSCLES

# **SKELETAL, CARDIAC, AND SMOOTH MUSCLES**

- Structural characteristics
  - Electrical and mechanical activities
  - Molecular mechanisms of contraction
  - Biophysical properties of muscle as a whole
  - Mechanisms of gradation/modulation of contraction
  - Overview of characteristic properties of skeletal, cardiac, and smooth muscles



### **SKELETAL MUSCLE**

### sarcolemma

## **CARDIAC MUSCLE**

intercalated discs

# **SMOOTH MUSCLE**

(vascular system, airways, gastrointestinal and urogenital systems)

# **ELECTRICAL CONNECTIONS "GAP JUNCTIONS"**

### **BASIC STRUCTURAL ELEMENTS OF FUNCTIONAL SYNCYTIUM**



# SKELETAL, CARDIAC, AND SMOOTH MUSCLES

- Structural characteristics
- Electrical and mechanical activity
  - Molecular mechanisms of contraction
  - Biophysical properties of muscle as a whole
  - Gradation / modulation of contraction
  - Overview of characteristic properties of skeletal, cardiac, and smooth muscles



# **SMOOTH MUSCLE CELL**

### TRIGGERING AND MODULATION OF MECHANICAL RESPONSES

**GREAT VARIETY IN** ELECTRO-MECHANICAL RELATIONS



### **SMOOTH MUSCLE CELL**

### **MECHANICAL RESPONSES can be triggered/modulated**

- by different patterns of ELECTRICAL ACTIVITY ELECTRO-MECHANICAL COUPLING ELECTRICAL STIMULATION
- by different NEUROHUMORAL STIMULATION
   NEUROTRANSMITTERS (acetylcholine, noradrenaline, ...)
   NEURAL STIMULATION

HORMONES (e.g. progesterone, oxytocin, angiotensin II, ...)

LOCAL TISSUE FACTORS (NO, adenosine, P<sub>CO2</sub>, P<sub>O2</sub>, pH, ...)

**HUMORAL STIMULATION** 

 by STRETCH of the smooth muscle cell (STRETCH-ACTIVATED CHANNELS)
 MECHANICAL STIMULATION

## **SKELETAL, CARDIAC, AND SMOOTH MUSCLES**

- Structural characteristics
- Electrical and mechanical activity
- Molecular mechanisms of contraction
  - Biophysical properties of muscle as a whole
  - Gradation / modulation of contraction
  - Overview of characteristic properties of skeletal, cardiac, and smooth muscles

# **CROSS STRIATED MUSCLES**



# **CROSS STRIATED MUSCLES**





### **CROSS-STRIATED MUSCLE**

### **ONE ELEMENTARY CYCLE OF CONTRACTION AND RELAXATION**



### **CROSS-STRIATED MUSCLE**

### **ONE ELEMENTARY CYCLE OF CONTRACTION AND RELAXATION**

### **MOLECULAR LEVEL**



## **CROSS-STRIATED MUSCLE**

### **ONE ELEMENTARY CYCLE OF CONTRACTION AND RELAXATION**



### CROSS-STRIATED MUSCLE





Animated model of interaction of <u>myosin head</u> with <u>actin filament (</u>,, paddling ")

### **Myosin – MOLECULAR MOTOR**

It consumes chemical energy released from *hydrolysis of ATP* and converts it into the motion (*mechanical work*)

**troponin – tropomyosin** complex





# **CONTRACTION VARIANTS OF SMOOTH MUSCLE CELL**



### **SMOOTH MUSCLE**

1

**PHASIC variant of CONTRACTION - mode of cycling** 



Adapted from Berne and Levi (2004)

### **SMOOTH MUSCLE**



Adapted from Berne and Levi (2004)

## **SKELETAL, CARDIAC, AND SMOOTH MUSCLES**

- Structural characteristics
- Electrical and mechanical activity
- Molecular mechanisms of contraction
- Biophysical properties of muscle as a whole
  - Gradation / modulation of contraction
  - Overview of characteristic properties of skeletal, cardiac, and smooth muscles

# **ISOMETRIC AND ISOTONIC CONTRACTION**



# **TENSION-LENGTH RELATIONSHIP**

| SKELETAL MUSC                                                        | <b>TOTAL</b> tension<br><b>TOTAL</b> tension<br><b>ACTIVE</b> tension<br><b>ACTIVE</b> tension<br><b>PASSIVE</b> tension<br><b>increase in muscle length</b><br>(in cm) | n<br>ion<br>sion<br><i>vivo</i> |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| <b>PASSIVE tension</b>                                               | tension of <i>unstimulated muscle</i> at gradual s                                                                                                                      | stretching                      |
| (ELASTIC COMPONENTS)                                                 |                                                                                                                                                                         |                                 |
| <b>TOTAL tension</b>                                                 | <b>ISOMETRIC CONTRACTIONS</b> of <i>stime</i>                                                                                                                           | <u>ilated</u>                   |
| <i>muscle</i> at gradually increased <i>initial (resting) length</i> |                                                                                                                                                                         |                                 |
| <b>ACTIVE tension</b>                                                | <i>difference</i> between <b>TOTAL</b> and <b>PASSIVE</b> tension curves at any length ( <i>tension actually generated by contractile elements</i> )                    |                                 |

# **ACTIVE TENSION** of **cross striated muscles** as a **function** of **INITIAL LENGTH of SARCOMERE**



# **SMOOTH MUSCLE**

### **CHARACTERISTIC FEATURES**

### • GREAT EXTENSIBILITY

(e.g. myocytes of <u>urinary bladder</u> can lengthen up to 200%, myocytes of <u>uterus</u> even up to 1000% at the end of pregnancy in relation to their original state)

### **PLASTICITY**

**No direct relation** between the **LENGTH** and **TENSION** in smooth muscle cells. Stretch-induced *increased tension* almost *immediately spontaneously decreases*.

**Analogous relation** is valid between **VOLUME** and **PRESSURE** in **hollow organs** (*stomach, intestines, urinary bladder, ...*).

## **PLASTICITY OF SMOOTH MUSCLE**



## **SKELETAL, CARDIAC, AND SMOOTH MUSCLES**

- Structural characteristics
- Electrical and mechanical activity
- Molecular mechanisms of contraction
- Biophysical properties of muscle as a whole
- Gradation / modulation of contraction
  - Overview of characteristic properties of skeletal, cardiac, and smooth muscles

## SKELETAL MUSCLE

# MAIN FACTORS IN GRADATION OF CONTRACTION

- ↑ *frequency* of discharges in *motor neuron* ⇒ FREQUENCY
   SUMMATION of contractions in skeletal muscle fibre
   (TETANIC CONTRACTION)
- *number* of activated MOTOR UNITS by increasing voluntary effort ⇒ SPATIAL SUMMATION (multiple fibre summation) RECRUITMENT OF MOTOR UNITS



**SKELETAL MUSCLE** 

# GRADATION of CONTRACTION by ↑ FREQUENCY of STIMULATIONSINGLE MUSCLE FIBRE

#### **RANGE OF SUMMATION**

physiological behaviour of skeletal myocyte



1 Hz = 1 impulse/sec

# **CARDIAC MUSCLE**

# MAIN FACTORS IN GRADATION OF CONTRACTION

- ↑ DIASTOLIC FILLING of ventricles in vivo (,,preload")

   ↑ contraction of ventricles proportionate to the stretching
   of cardiomyocytes at the end of diastole

   FRANK-STARLING'S LAW
- **FREQUENCY of electrical activity** of cardiac cells *via* modulation of pacemaker activity of SA node by sympathetic nerves positive FREQUENCY EFFECT
- **LIGAND-RECEPTOR ACTIVATION CASCADES** leading to  $\uparrow [Ca^{2+}]_i$  (noradrenalin, adrenalin, thyroxine, ...)



# **SMOOTH MUSCLE**

### MAIN FACTORS IN GRADATION OF CONTRACTION / TONUS

■ **DEPOLARIZATION of the smooth muscle membrane** with or without triggering of action potentials via opening of the *voltage dependent calcium channels*  $\Rightarrow \uparrow [Ca^{2+}]_i$ 

**FACTORS** <u>in</u>dependent on membrane depolarization

- *Ligand-receptor activation cascades* leading to  $\uparrow [Ca^{2+}]_i$ (e.g. *via activation* of PLC  $\Rightarrow \uparrow IP_3$  releasing Ca<sup>2+</sup> from SR)
- Stretching of the smooth muscle cell ⇒ opening of the stretch-activated channels ⇒ ↑ [Ca<sup>2+</sup>]<sub>i</sub>

 $\uparrow$  Ca<sup>2+</sup>-calmodulin complex

## **SKELETAL, CARDIAC, AND SMOOTH MUSCLES**

- Structural characteristics
- Electrical and mechanical activity
- Molecular mechanisms of contraction
- Biophysical properties of muscle as a whole
- Gradation / modulation of contraction
- Overview of characteristic properties of skeletal, cardiac, and smooth muscles

## **SKELETAL MUSCLE**

### MAIN CHARACTERISTIC FEATURES

- *Multinucleated* long cylindrical cells (max. length up to 20 cm)
- *Rich* sarcoplasmic reticulum
- *Regular arrangement* of thick and thin filaments in sarcomeres (*cross striation*)
- Activity strongly dependent on *motor nerve supply* (excitation transmitted via *motor end-plate*)
- Without intercellular connections (no gap junctions between muscle cells)
- Motor neurons branch to innervate more muscle cells (*motor unit* defined as one motor neuron with 5-1000 myocytes)
- Summation of contractions (tetanus) is a physiological property of muscle fibre
- Activity under *voluntary control*



*motor unit* 

# MAIN TYPES OF SKELETAL MUSCLE FIBRES

TYPE ISLOW - RED

e.g. muscles of the back, soleus m.

- *Slow* (posture-maintaining) *contractions*
- Motor units contain slowly conducting motor neurons

**High OXIDATIVE CAPACITY** and <u>high</u> resistance to fatigue

TYPE II

FAST (RED /WHITE)

e.g. extraocular muscles, muscles of the hand

- *Short* twitches for fine skilled movements
- Motor units with rapidly conducting motor neurons

**TYPE IIa (FAST-RED) and TYPE IIb (FAST-WHITE)** 

**Proportion of OXIDATIVE and GLYCOLYTIC metabolism determines the resistance to fatigue** 

Sport activities cause gradual transformation from IIb into IIa

### **CARDIAC MUSCLE**

## MAIN CHARACTERISTIC FEATURES

- Branched and interconnected cells with one nucleus in the centre (length ~100 μm)
- Well (moderately) developed sarcoplasmic reticulum
- *Regular arrangement* of thick and thin filaments in sarcomeres (*cross striation*)
- Excitations (contractions) are independent on nerve supply (*specialized pacemaker cells*)
- Functional syncytium (electrical connections *gap junctions*)
- *Receptors* for *neurotransmitters* (released from neuron endings) and *hormones* (brought by circulation); activity is *modulated* by *local mediators*
- *Long refractory period prevents* cells from tetanic contraction (which would be life threatening)
- Activity is **not** under *voluntary* control

### **SMOOTH MUSCLE**

### MAIN CHARACTERISTIC FEATURES

- Thin *spindle-shaped* cells of various length (20-200 μm) with *one nucleus* in the centre
- *Irregular arrangement* of thick and thin filaments; no cross striation
- Poorly developped sarcoplasmic reticulum, TT system is missing
- Contractions of *visceral muscles* can be triggered independently on nerve supply (*slow irregular unstable pacemaker activity*); functional syncytium (*gap junctions*)
- Slow *phasic*, often *tonic*, even *tetanic* contractions
- Numerous *receptors* for *neurotransmitters* (released from neuron endings) and *hormones* (brought by circulation). Activity is greatly modulated by *local mediators* (local tissue factors)
- Activity can be triggered by stretch (*stretch activated channels*)
- Great extensibility and plasticity
- Activity without voluntary control

# **TYPES OF SMOOTH MUSCLE**

### **VISCERAL** "SINGLE UNIT"

e.g. stomach, intestine, uterus, ureter, ...

- Functional syncytium (gap junctions)
- Excitation and contraction can be evoked *in the absence of nerve supply* (*slow irregular pacemakers in multiple foci* shifting from place to place, *gap junctions*)
- Contraction evoked by **stretching** (*stretch-activated channels*)

### **MULTIUNIT**stimulated by neurons

e.g. arterioles, m. ciliaris, muscle of iris, ...

- Myocytes need the stimulation by autonomic "motor" neurons releasing *acetylcholine / norepinephrine, ...* (AUTONOMIC "MOTOR UNITS")
- Cells are **not** interconnected by **gap junctions**, **APs** are **not** triggered
- Synapses "*en passant*" in the course of the neuron endings
- Contractions are *finely graded* and *localized*

