

Thermoregulation

Physiology II lecture (aVLFY0422p)

Tibor Stračina

The presentation is copyrighted work created by employees of Masaryk University. Any unauthorized reproduction or distribution of the presentation or individual slides is against the law.

Body temperature – homeostatic parameter

Heat stroke

Hard exercise, fever

Normal body temperature $(36,3-37,1^{\circ}C)$

Loss of consciousness

Muscle failure, cardiac fibrillation

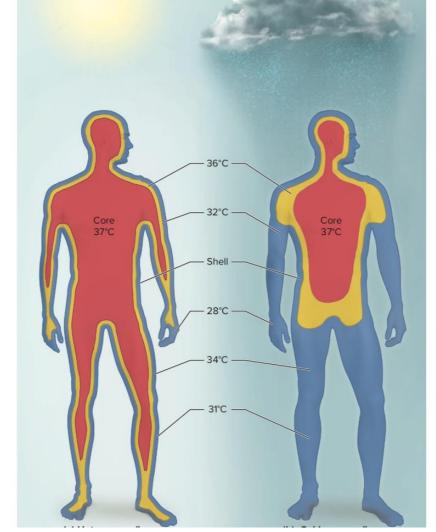
40

35

30

25

HYPO-

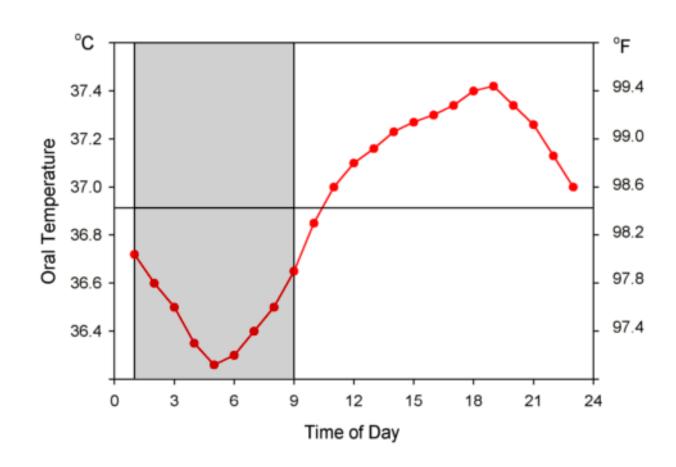


Body core vs. shell

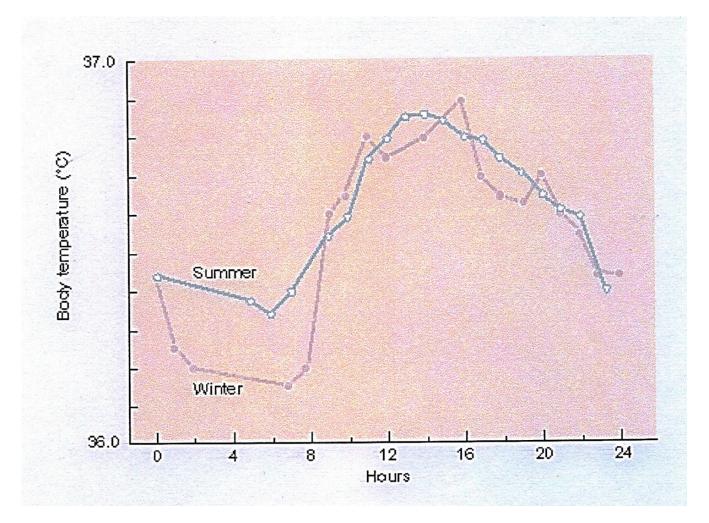
– homeotherms vs. poikilotherms

Body core temperature –
regulated within certain (narrow)
range

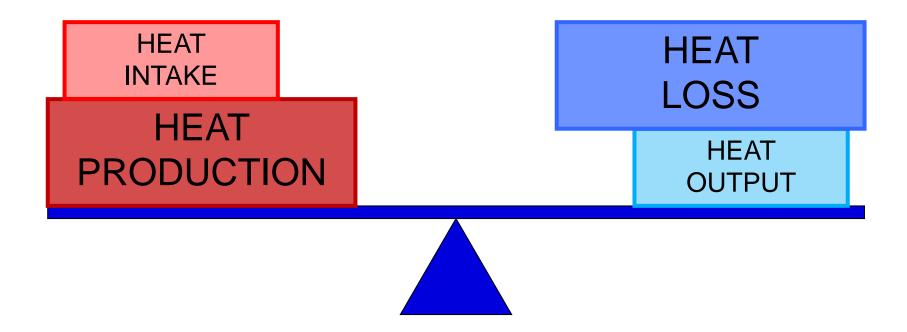
Skin temperature (shell) – more
variable (ambient t., core body t.)


Adopted from: K.S. Saladin, *Anatomy & Physiology—The Unity of Form and Function*, 8th ed. (McGraw-Hill, 2018)

Variations of body core temperature


- Circadian rhythm
- Circamensal rhythm (women between puberty and menopause)
- Seasonal variations (circannul rhythm)

Ageing



Variations of body core temperature

A fine balance of body core temperature

Heat vs. temperature

 Heat [J] – energy transferred to or from the system; measure of the internal energy state

 Temperature [K, °C, °F] – a measure of heat content; mean kinetic energy of the particles (molecules, ions)

Transfer of heat within the body

- primarily by CONVECTION
- medium = blood

- minor amount by CONDUCTION
- direct contact of organs/tissues

Heat production

- Metabolism: metabolic rate ≈ heat production
- Physical activity (active muscle contraction) rest vs. exercise

Postprandial thermogenesis (food intake)

- Shivering thermogenesis
- Non-shivering thermogenesis (brown adipose tissue)

Heat intake and loss

passive processes

- RADIATION
- CONVECTION
- CONDUCTION

– skin-environment temperature gradient

Heat output (active loss)

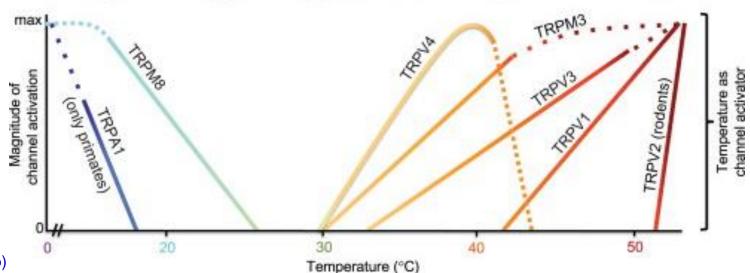
- EVAPORATION
- sensible perspiration = sweat production (1 L of evaporated s. = 2 428 kJ)
- Insensible perspiration = diffusion of water through skin and mucosae

- from the skin to the environment
- (RADIATION)
- (CONDUCTION)
- (CONVECTION)

Thermoregulation

— All processes involved in keeping the body core temperature within the range

Thermoregulatory behaviour


Social thermoregulation

Afferentation

- Central thermoreceptors deep brain temperature
- temperature-sensitive neurons in anterior preoptic hypothalamus

- Peripheral thermoreceptors skin temperature
- TRP channels

Thermoregulatory centre

anterior preoptic HYPOTHALAMUS

- integration of afferent information
- modifying the efferent pathways (vegetative, somatic) to the thermal effectors

- "set-point" vs. threshold temperature for the effector(s)

Thermal effectors

- Behaviour
- Cutaneous circulation
- Sweat glands
- Skeletal muscles (shivering)
- Horripilation
- Brown adipose tissue (nonshivering thermogenesis)

Cold-induced thermoregulatory mechanisms

- Decrease of heat loss
 - Behaviour: Decrease of body surface, taking warm clothes
 - Vasoconstriction in the skin. Horripilation
 - Inhibition of sweating
- Increase of heat production
 - Skeletal muscles: Intentional movements (behaviour). Shivering
 - Nonshivering thermogenesis (brown adipose tissue, NA, β3R, UCP1)
 - Hunger (increas of food intake)

Warm-induced thermoregulatory mechanisms

- Increase of heat loss/output
 - Skin vasodilatation
 - Increase of sweating (evaporation)
 - Increase of ventilation
- Decrease of heat production/intake
 - Behaviour: Moving out of the sun, taking light clothes. Inactiveness (decrease of intentional movements), apathy
 - Loss of appetite

The presentation is copyrighted work created by employees of Masaryk University. Any unauthorised reproduction or distribution of the presentation or individual slides is against the law.

