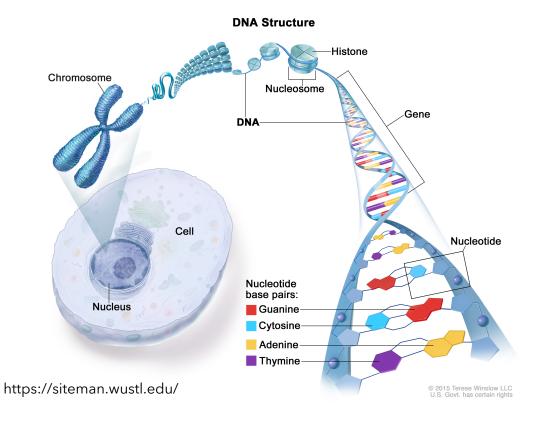
Cytogenetics and molecular genetics in oncology

Karla Plevová

Outline of the presentation


- 1. Differences in molecular genetics and cytogenetics of congenital disorders vs cancer
- 2. Application of molecular-genetic and cytogenetic findings in oncology
- 3. Material sources and material used
- 4. Methods used and practical examples

MG: molecular genetics

CG: cytogenetics

Cancer as a genetic disease

Two levels: Cancer hereditary syndromes - germline mutations Genetic alterations gained during a lifetime - somatic

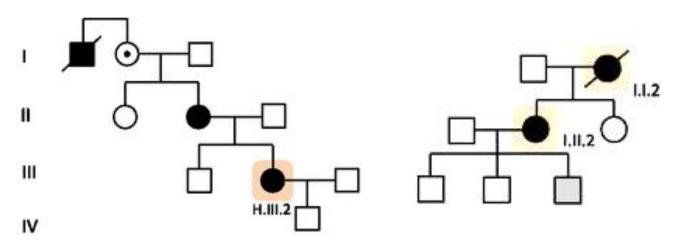
Why molecular genetics and cytogenetics in oncology can be interesting for a dentist?

Acute myeloid leukemia (AML) manifesting by blast infiltration in gums.

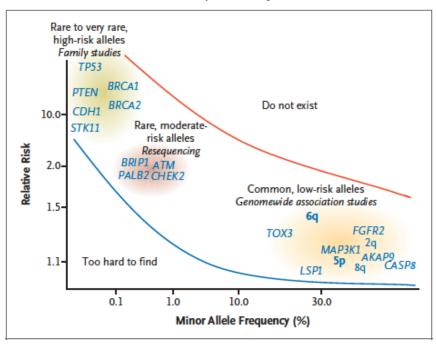
1. Differences in MG and CG of congenital disorders vs cancer

Characteristics	Congenital disorders	Cancer
Prevailing origin of genetic defects	Germline	Somatic
Extent of genetic abnormalities	Single or small number of changes	Variable, typically higher
Type of abnormalities	One/two types present per case	Combination of all types
Mosaicism	Rare	Common

2. Application of MG and CG findings in oncology


- Hereditary predisposition assessment
- Establishing and refining diagnosis
- Disease prognostication
- Treatment optimization
- Disease activity monitoring
- Disease complication diagnostics

Requirements on the techniques


- High specificity and high sensitivity, limit of detection
- Fast processing range of few hour to few days
- Tools for data analysis (bioinformatics for NGS)
- Standardization and validation
- Availability of reference material (positive/negative controls),
 reference sequences
- Regular quality assessment
- Compliance with legislation regulations

Hereditary predisposition assessment

- Cases of cancer accumulated in families
- Autosomal dominant and recessive inheritance
- Typical onset at young age
- Genetic counseling
- Screening for causative variants

Breast-Cancer Susceptibility Loci and Genes.

Foulkes, NEJM 2008

Hereditary predisposition assessment

WHO classification of myeloid neoplasms with germ line predisposition and guide for molecular genetic diagnostics

77	ш	റ	1	355	fi.	-	

Classification*

Myeloid neoplasms with germ line predisposition without a preexisting disorder or organ dysfunction

AML with germ line CEBPA mutation

Myeloid neoplasms with germ line DDX41 mutation 1

Myeloid neoplasms with germ line predisposition and preexisting platelet disorders

Myeloid neoplasms with germ line RUNXI mutation 1

Myeloid neoplasms with germ line ANKRD26 mutation 1

Myeloid neoplasms with germ line ETV6 mutation

Myeloid neoplasms with germ line predisposition and other organ dysfunction

Myeloid neoplasms with germ line GATA2 mutation

Myeloid neoplasms associated with bone marrow failure syndromes

Juvenile myelomonocytic leukemia associated with neurofibromatosis, Noonan syndrome, or Noonan syndrome-like disorders

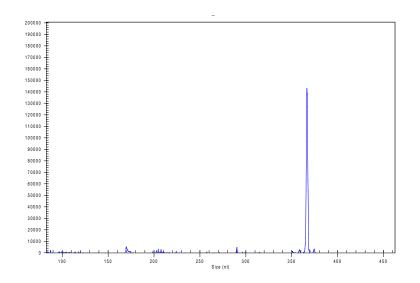
Myeloid neoplasms associated with Noonan syndrome

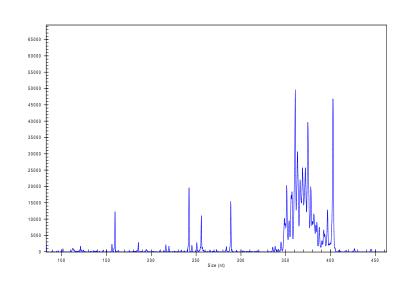
Myeloid neoplasms associated with Down syndrome[†]

Table 2 - ACMG list of hereditary cancer syndromes, most with childhood onset, for reporting incidental findings.

Syndrome	Gene	Inheritance
Li-Fraumeni	TP53	AD
Peutz-Jeghers	STK11	AD
Familial adenomatous polyposis	APC	AD
Von-Hippel Lindau	$V\!H\!L$	AD
Multiple endocrine neoplasia	MEN1 (type 1); RET (type 2)	AD
Hamartomatosis	PTEN	AD
Retinoblastoma	RB	AD
Paraganglioma-pheochromocytoma	SDHAF2, SDHB, SDHC, SDHD	AD
Tuberous sclerosis complex	TSC1, TSC2	AD
Neurofibromatosis type 2	NF2	AD
WT1-related Wilms tumor	WT1	AD

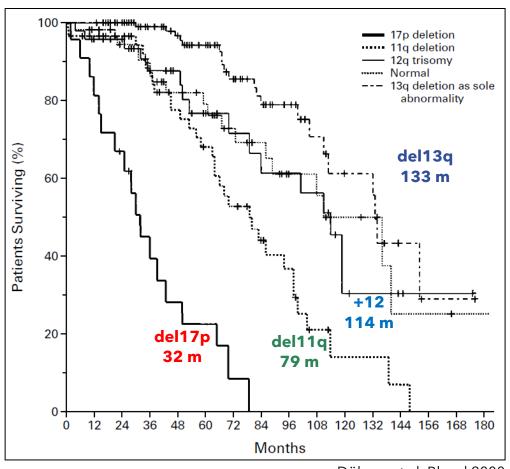
AD, autosomal dominant.


Establishing and refining diagnosis

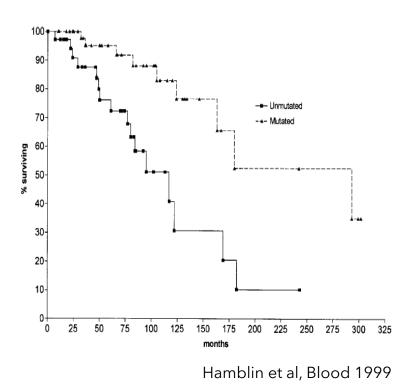

- Diagnosis confirmation based on detection of specific (marker) gene or chromosomal abnormalities
- Incorporation of genetic/cytogenetic markers in WHO classification
- Resolving ambiguous cases
- Markers specific for the whole diagnostic entity or only for a subset of a disease (implications for treatment)
- Examples
 - Mantle cell lymphoma translocation t(11;14)
 - Hairy cell leukemia BRAF V600E mutation

Establishing and refining diagnosis

Clonality


- Typical characteristics of lymphoid (but also other) malignancies
- Analysis of antigen receptor rearrangements, translocations and gene mutations
- Monoclonal vs polyclonal picture distiguishing of malignant vs reactive conditions
- Quantification of tumor load

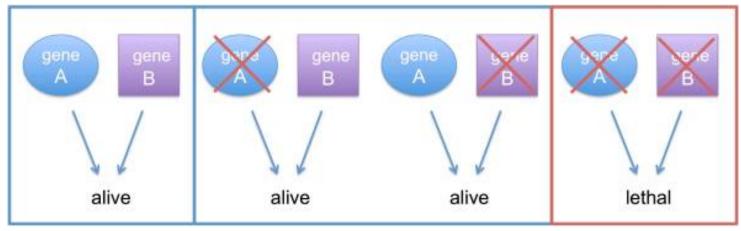
Disease prognostication


- Genetic and cytogenetic markers associated with certain disease features
- Risk assessment at time of diagnosis
- Genetic markers of various types gene mutations, chromosomal abnormalities, a type of antigen receptor rearrangement, ...
- Prognostic vs predictive markers

Döhner et al, Blood 2000

Disease prognostication

CLL:

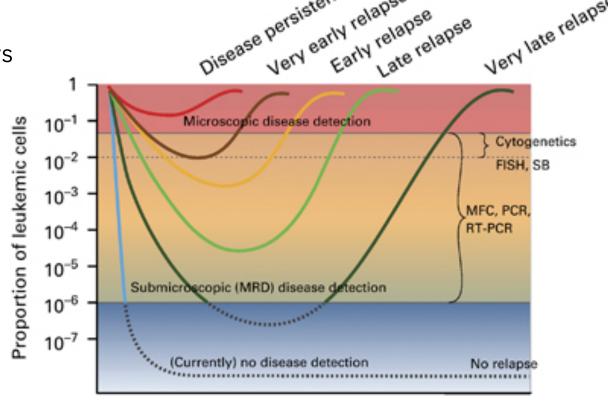


AML:

Risk category	Cytogenetic or molecular genetic abnormality
Favourable	t(8,21)(q22;q22); <i>RUNX1-RUNX1T1</i> inv(16)(p13.1;q22) or t(16;16)(p13.1;q22); <i>CBFB-MYH11</i> t(15;17)(q24;q21) <i>PM-RARA</i> Mutated <i>NPM1</i> without <i>FLT3-ITD</i> (normal karyotype)
Intermediate	Biallelic mutated CEBPA (normal karyotype) Mutated NPM1 and FLT3-ITD (normal karyotype) Wildtype NPM1 and FLT3-ITD (normal karyotype) Wildtype NPM1 without FLT3-ITD (normal karyotype) Normal karyotype not classified as favourable. t(9;11)(p22;q23); MLLT3-KMT2A
Poor	Cytogenetic abnormalities not classified as favourable or poor inv(3)(q21q26.2) or t(3;3)(q21;q26.2); GATA2-MECOM (EVI1) t(6;9)(p23;q34); DEK-NUP214 t(v;11)(v;q23); KMT2A rearranged t(9;22)(q34.1;q11.2); BCR-ABL1 -5 or del(5q); -7; -17/abn(17p) Complex karyotype (>3), monosomal karyotype Wild type NPM1 and FLT3-ITD Mutated RUNX1 Mutated ASXL1 Mutated TP53

Treatment optimization

- Concept of personalized treatment tailored for individual patients
- Treatment response related to genetic abnormalities detected in cancer cells
- Targeted treatment blocking the growth and spread of cancer by interfering with specific molecules ("molecular targets")
- Synthetic lethality blocking or inactivation of two genes leads to cell death



Treatment optimization - examples

Diagnosis	Genetic defect	Treatment option
Chronic myeloid leukemia	BCR-ABL fusion gene	Tyrosine kinase inhibitors (imatinib, dasatinib etc.
Breast cancer	BRCA1 mutations	PARP inhibitor olaparib
Non-small cell lung cancer	EGFR mutations	EGFR inhibitors (erlotinib, afatinib etc.)
Non-small cell lung cancer	ALK gene rearrangements	ALK inhibitors (crizotinib, ceritinib etc.)
Melanoma	BRAF mutations	BRAF inhibitors (dabrafenib, vemurafenib etc.)
Colorectal cancer	KRAS mutations	Contraindication for targeting EGFR by cetuximab and panitumumab

Disease activity monitoring

- Minimal residual disease (MRD) cancer cells remaining after therapy
- Need for MRD marker identification before therapy
- Monitoring of MRD markers after therapy
- Design of patient-specific and sensitive assays
- Typical markers:
 - Gene rearrangements
 - Fusion genes
 - Gene mutations

Buckley SA, et al. Bone Marrow Transpl. 2013.

Disease complication diagnostics

Infection complications related to cancer treatment

- Opportunistic infections otherwise common pathogen causing severe symptoms
- Related to bone marrow (BM) and peripheral blood stem cell (PBSC) transplantation and other cancer-specific treatment (e.g. alemtuzumab)

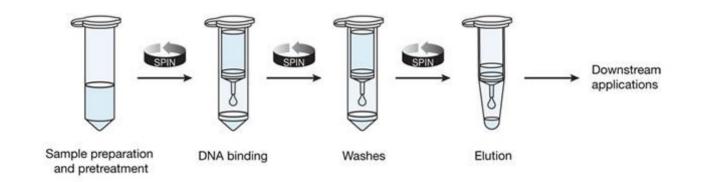
Molecular diagnostics - typing of pathogens according to their DNA/RNA sequence

- (multiplex) PCR, real-time PCR, NGS
- Quantification and monitoring of pathogen load

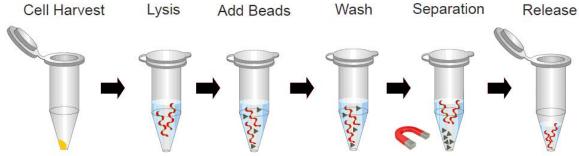
Table 2.
Pathogen Frequency by Treatment Arm

Organism	BM	PBSC
Bacterial infections		
Staphylococcus (coagulase negative)	123 (82)	101 (67)
Enterococcus (all species)	54 (42)	49 (40)
Clostridium difficile	69 (52)	54 (41)
Staphylococcus (coagulase positive)	10 (9)	30 (20)
Escherichia (also E. coli)	16 (15)	23 (19)
Viral infections		
CMV	78 (61)	81 (57)
Polyomavirus	27 (25)	27 (24)
Herpes simplex (HSV1, HSV2)	16 (14)	22 (17)
EBV	15 (12)	21 (15)
Influenza	22 (19)	13 (13)
Fungal/parasitic infections		
Other (suspected) fungus	12 (11)	13 (12)
Yeast other than Candida albicans	5 (4)	12 (10)
Candida albicans	6 (6)	10 (8)
Aspergillus fumigatus	5 (5)	6 (5)
Mucormycosis (Zygomycetes, Rhizopus)	5 (4)	2 (2)
Pneumocystis	1 (1)	2 (2)
Toxoplasma	1 (1)	1 (1)


HSV indicates herpes simplex virus; CMV, cytomegalovirus; EBV, Epstein Barr virus.

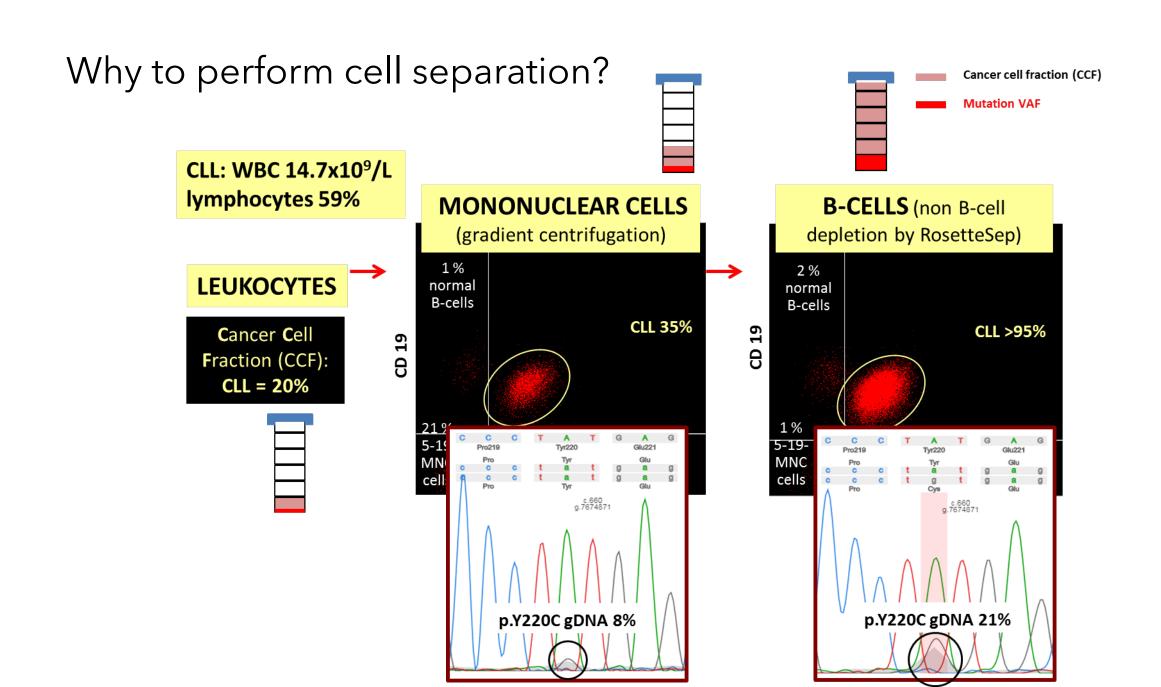

Only the top 5 organisms for each infection type are listed.

Young et al, Biol Blood Marrow Transplant 2016


3. Materials used and material sources

- Types of samples
 - Cells
 - DNA
 - RNA
 - cfDNA

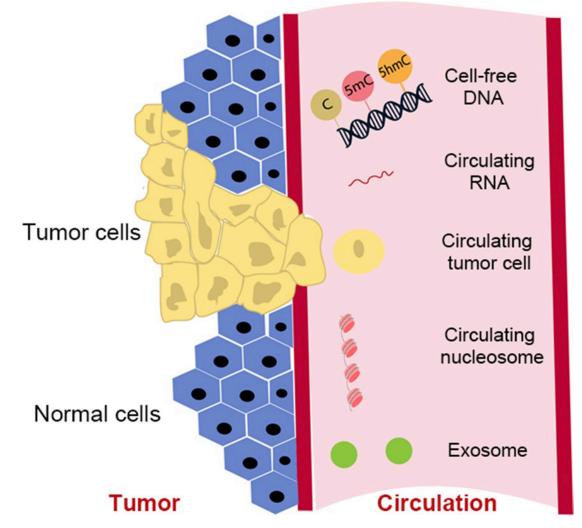
Magnetic


Materials used and material sources

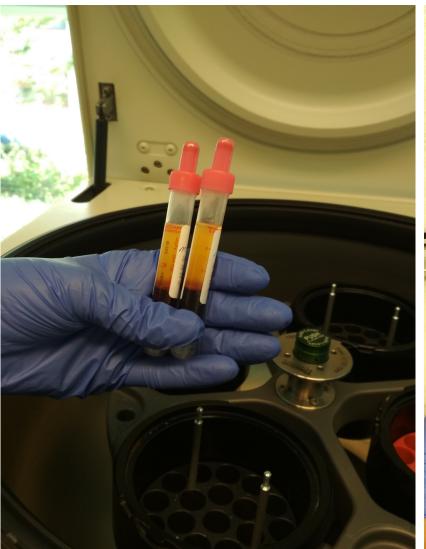
- Sampling
 - Peripheral blood
 - Bone marrow
 - Liquid biopsies
 - Aspirates
 - Fine-needle biopsies
 - Fresh tissue
 - Formalin-fixed paraffin-embedded (FFPE) tissue
 - Swabs (buccal, NPh, ...)

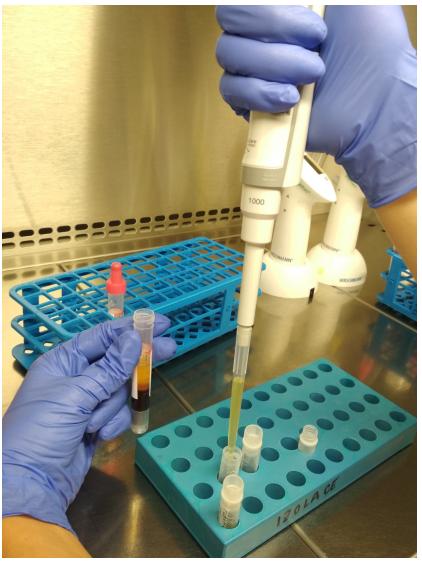
Peripheral blood

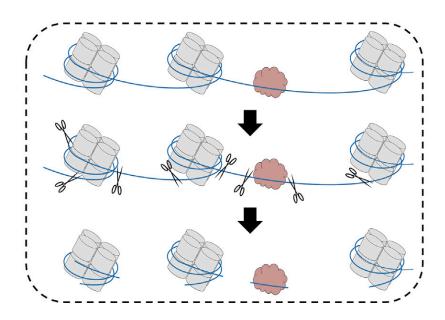
- EDTA or heparin collection tubes
- Different cell population used according to the application:
 - Leukocytes
 - Mononuclear cells
 - Granulocytes
 - Lymphocytes
 - Specific cell subpopulations

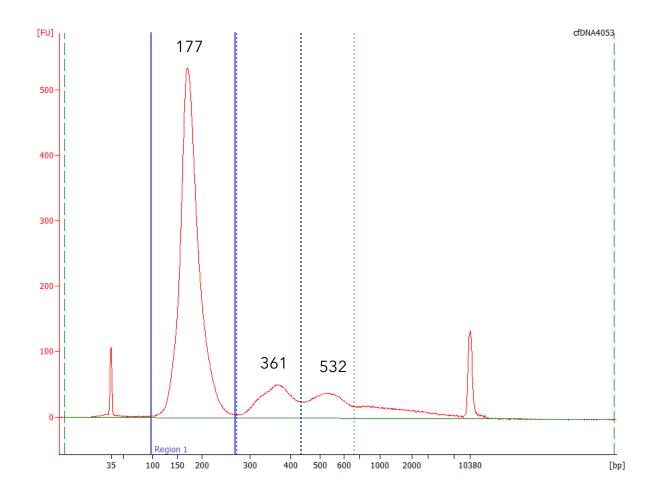


Liquid biopsies


Very low amount of material


- Plasma / serum
- Urine
- Joint fluid
- Cerebrospinal fluid
- **—** ...


Liquid biopsies - material collection

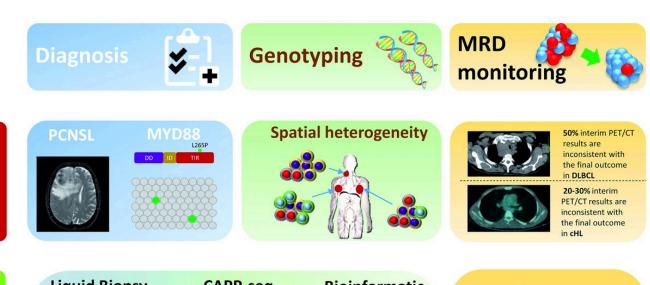


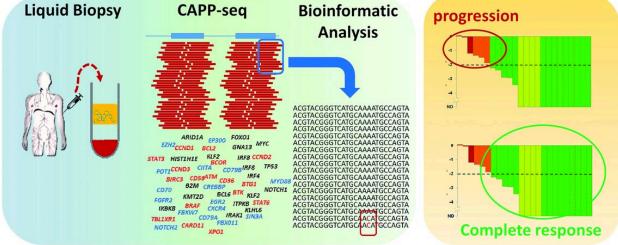
cfDNA

Snyder et al, Cell 2016

cfDNA

Applications

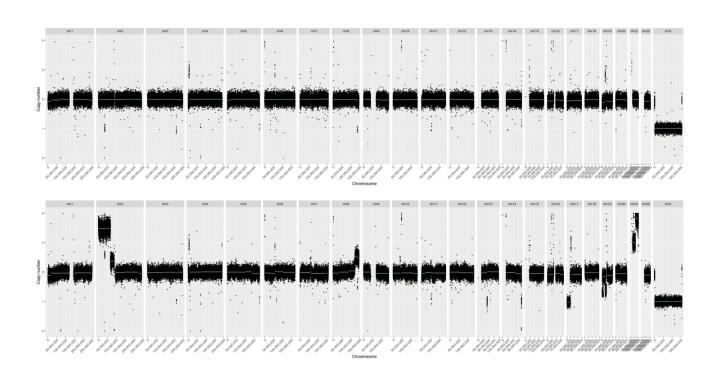

- Diagnosis, early detection
- Genotyping
- Disease risk stratification
- Treatment selection
- Treatment response assessment


Unmet needs

Solutions

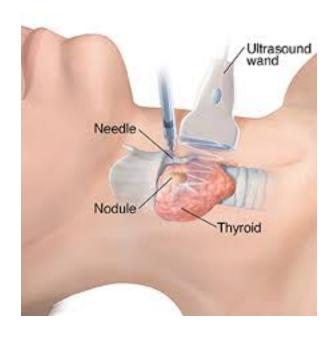
Disease monitoring

Solid tumors and hematological malignancies



cHL, classical Hodgkin lymphoma; DLBCL, diffuse large B-cell lymphoma; MRD, minimal residual disease; PCNSL, primary nervous system lymphoma.

cfDNA


Methods

- NGS targeted amplicons, gene panels, WGS
- real-time PCR
- FDA approved assays for gene mutation detection

Tissues

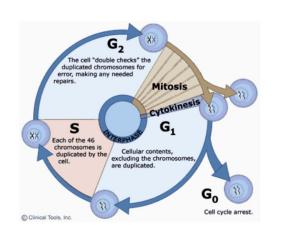
- Biopsies, fine-needle biopsies
- Fresh frozen vs FFPE tissue
- Decreased DNA and RNA quality (fragmented, chemically modified in case of FFPE material)
- Mainly used in diagnostics of solid tumors
- Invasive

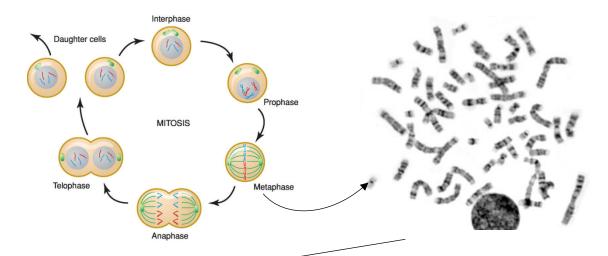


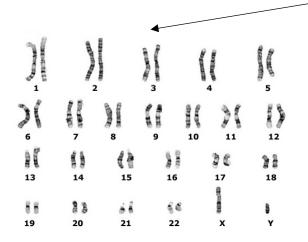
Swabs

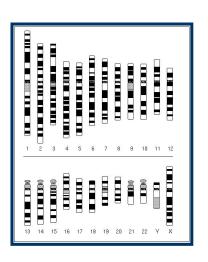
Different applications

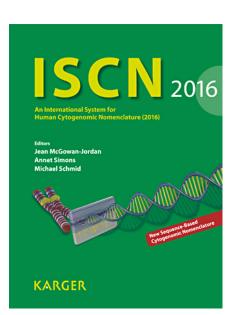
- Collection of germline material buccal swabs
- Pathogen analyses e.g. nasopharyngeal swabs

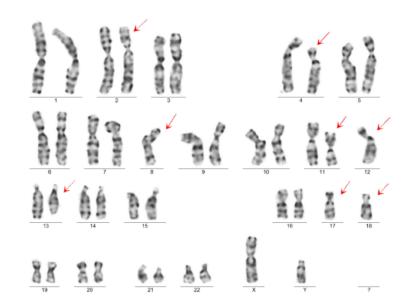


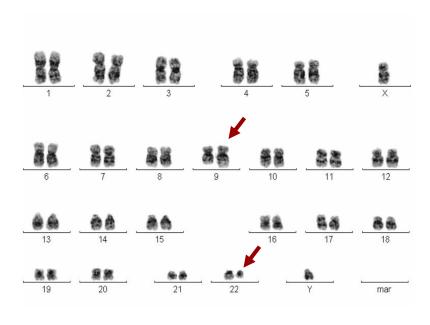

4. Methods used and practical examples

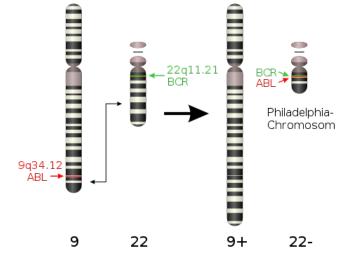

- Chromosome banding techniques
- Fluorescence in situ hybridization
- Genomic arrays
- PCR and real-time PCR
- Droplet digital PCR


- Sanger sequencing
- Next-generation sequencing
 - Amplicon sequencing
 - Panel sequencing
 - Whole exome sequencing
 - Whole genome sequencing


Classical cytogenetics - chromosome banding techniques

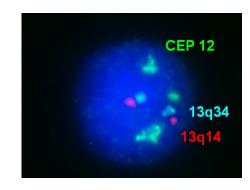


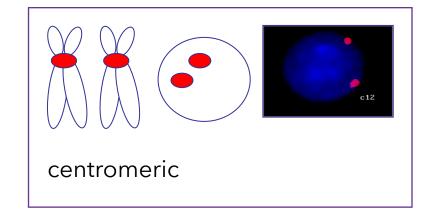

Classical cytogenetics - chromosome banding techniques

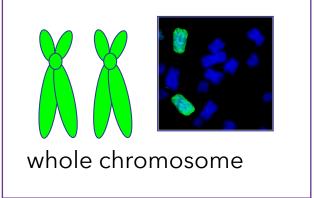

Resolution >10 Mbp

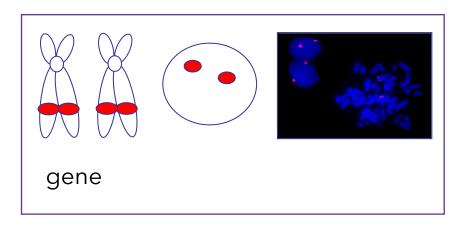
Applications

- Detection of typical abnormalities
- Complex karyotype assessment
 (≥3 or ≥5 abnormalities)

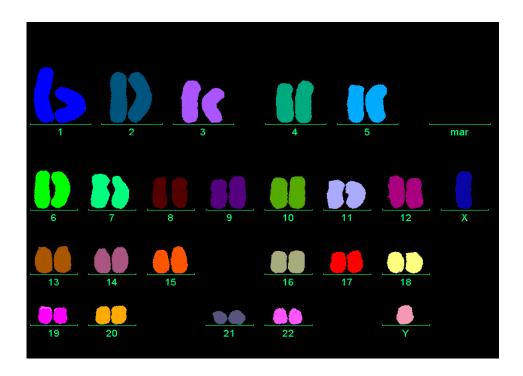


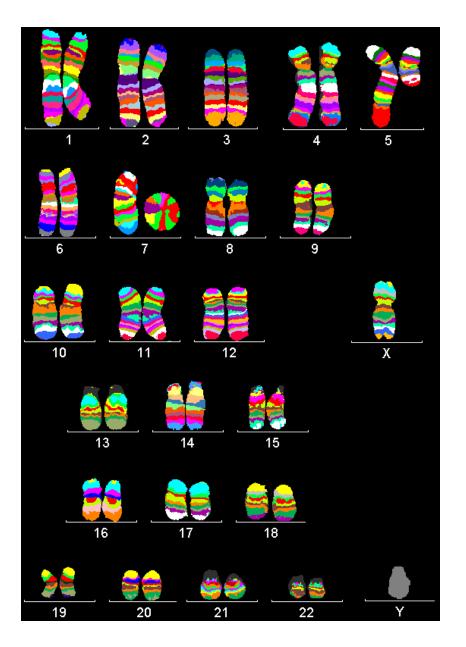



Molecular cytogenetics


- Fluorescent in situ hybridization (FISH)
- Targets specific regions based on DNA sequence
- Detection of chromosomal abnormalities with diagnostic, prognostic and predictive value

Probe types:

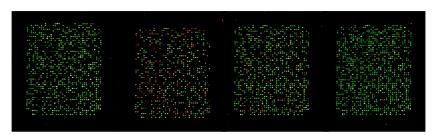




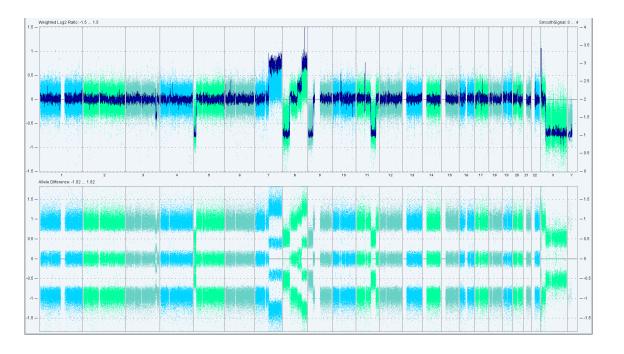
Molecular cytogenetics

FISH methods for genome-wide analysis

mFISH



mBAND


Genomic arrays

- Molecular cytogenetic technique for detection of genomic gains and losses
- Detection of copy-neutral loss of heterozygosity
- Not possible to detect balanced rearrangements
- Precise breakpoint localization, identification of affected genes
- High resolution, genome-wide
- No need for viable cells

arrayCGH & SNP array

Comparison of sensitivity of cytogenetic techniques

	Aneu- ploidy	CNA	Poly- ploidy	Clonal heterogeneity	Focal amplification	Balanced rearrangements	Unbalanced rearrangements	cn-LOH
Classical cytogenetics	+++	+	+++	+++	++	+++	+++	-
Interphase FISH	+++	++	+	+++	+++	+++	++	-
ArrayCGH	+++	++	-	+	+++	-	++	-
CGH+SNP array	+++	+++	+	+	+++	-	++	++
SNP array	+++	+++	++	++	+++	-	++	+++

CNA - copy number alteration, gains or lossess of genetic material **cn-LOH** - copy neutral loss of heterozygozity

Polymerase Chain Reaction (PCR) and real-time PCR


PCR

- Amplification of region of interest using specific primers
- Cycling reaction condition
- Product of reaction serves as an input for further analyses (Sanger sequencing, fragment analysis, NGS, ...)

Real-time PCR

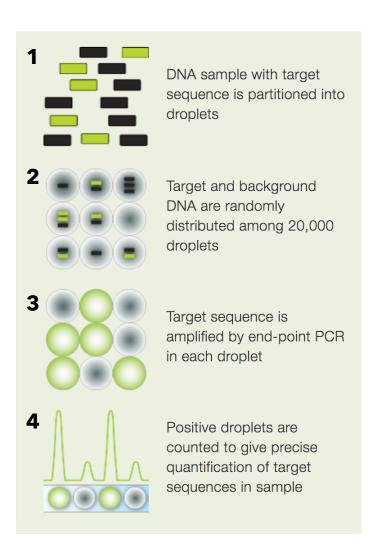
- Quantitative method fluorescent detection of generated products
- Need for specific primers and probes
- Relative vs absolute quantification

Real-time PCR applications

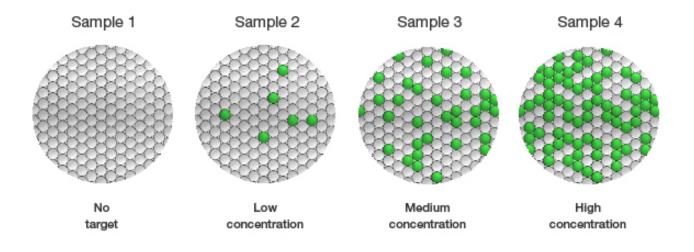
- Quantification of minimal residual disease after therapy detection of tumor specific markers (fusion genes, antigen receptor rearrangements etc.)
- Gene expression analysis
- PML RARα

 PML RARα

 3 4 5 6 3 bcr 1 (L type)


 F primer probe

 HCDR3


 V N D N J

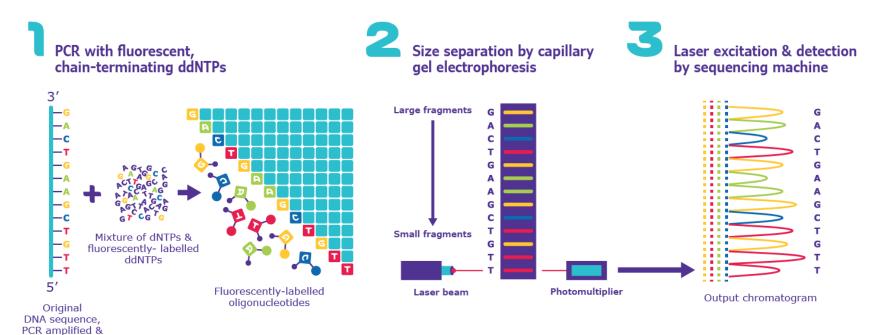
 Box 2 (V type)

Droplet digital PCR (ddPCR)

- Alternative method for marker absolute quantification
- Highly precise
- Need for specific instrumentation

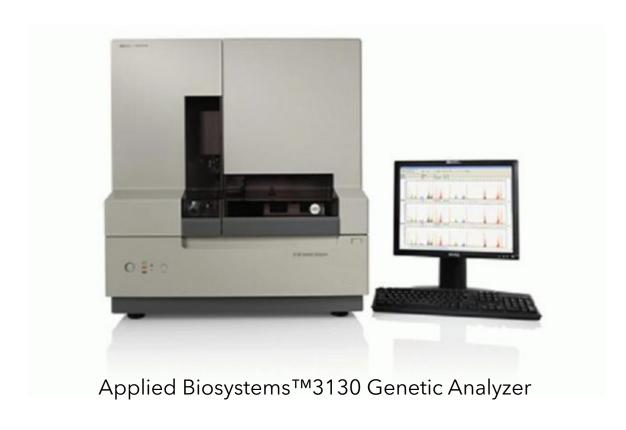
Sanger sequencing

Modification of PCR

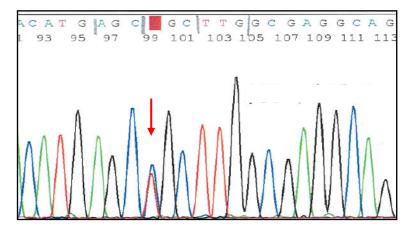

single primer extension

denatured

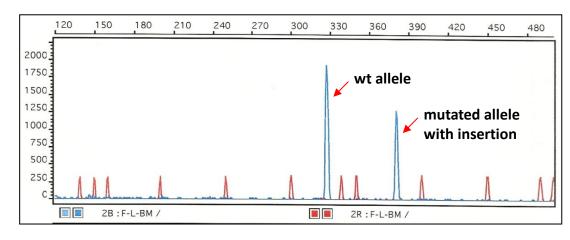
Incorporation of dNTPs and ddNTPs


Applications

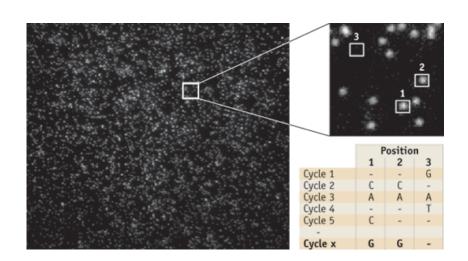
 Basic method for sequence variant detection (mutations, breakpoint localization)



https://www.sigmaaldrich.com/technical-documents/articles/biology/sanger-sequencing.html


Sanger sequencing

Sequencing analysis output


Fragment analysis - modification of the method

NGS - principles and targeted regions

Next-generation sequencing (NGS) ~ masively parallel sequencing (MPS)

- PCR amplification of DNA fragments
 or direct sequencing of individual fragments (single molecule sequencing)
- The most common approach sequencing by synthesis (Illumina sequencers)
- Milions of fragments are amplified simultaneously (vs capillary sequencer max 96 reactions)
- Short reads (tens to hundreds basepairs)

NGS - principles and targeted regions

Illumina machines and their capacity

NovaSeq

48 genomes/run, 6 TB/run

HiSeq 4000

12 genomes/run, 1.5 TB/run

NextSeq 500

1 genome/run, 120 GB/run

MiSeq

0.15 genome/run, 15 GB/run

MiniSeq

0.07 genome/run, 7.5 GB/run

iSeq

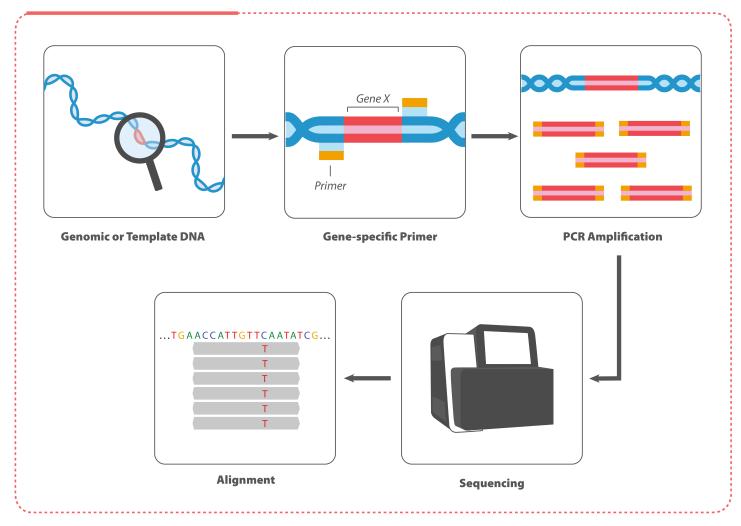
0.01 genome/rin, 1.2 GB/run

NGS - regions of interest

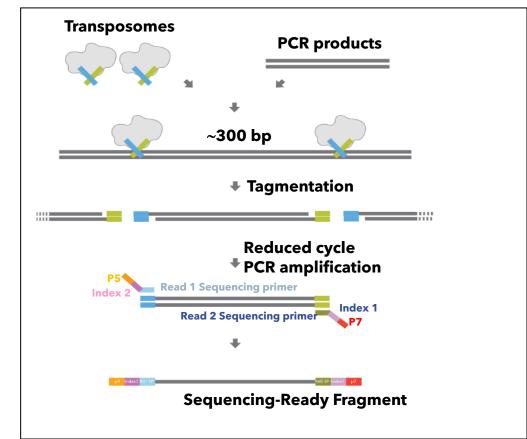
genome

3 200 000 000 bp 30 x read depth

exome

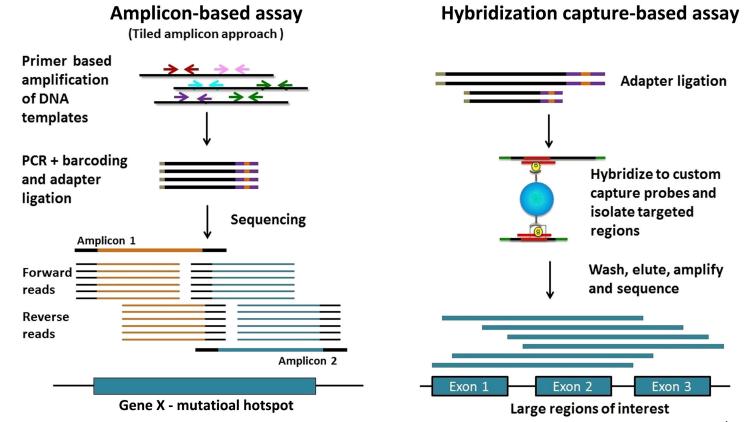

20 000 genes 100 x read depth

selected genes or loci

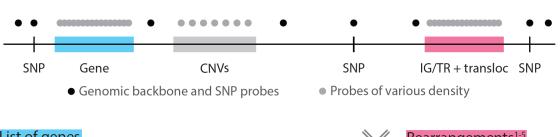

< 100 genes ≥ 1000 x read depth

Amplicon sequencing

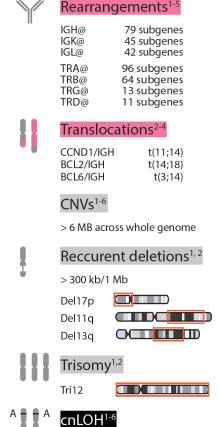
Application: TP53 mutation analysis


- NGS with high coverage (limit of detection 0.1 % of variant allele)
- treatment response prediction

https://www.abmgood.com/Amplicon-Sequencing-Service.html

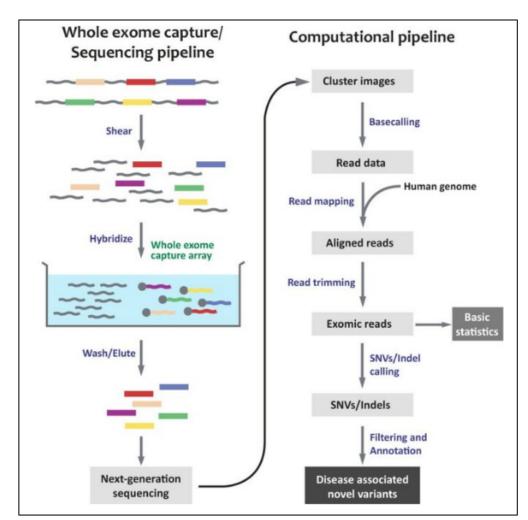

Panel sequencing

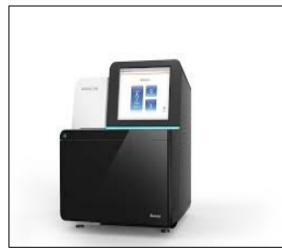
- Sets of selected regions of interest
- Target enrichment by amplification or hybridization

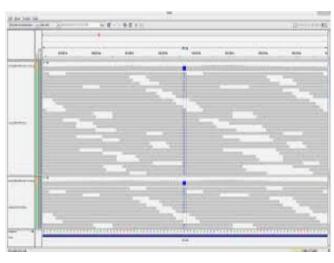

Panel sequencing

LYNX panel - diagnostics of molecular markers in lymphoid malignancies (1CLL, 2MCL, 3FL, 4DLBCL, 5ALL, 6Ph-like ALL)

List of genes

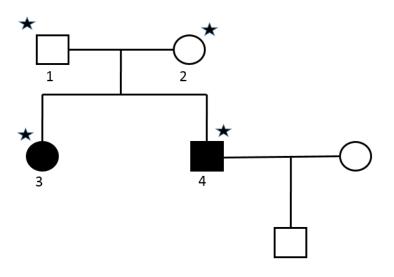

ARID1A ^{1,3}	ASXL ^{1,5}	ATM ^{1, 2}	BIRC3 ^{1,2}	BRAF ^{1, 3-5}
BTG1 ⁶	CARD11 ¹⁻⁴	CCND1 ²	CD79A ^{1,4}	CD79B ^{1, 2, 4}
CDKN2A ¹⁻⁵	CDKN2B ³⁻⁵	CHD2 ¹	CREBBP ^{1, 3-5}	CRLF2 ⁵
CSF2RA ⁶	EBF1 ⁶	EGR2 ¹	EP300 ^{1,3,4}	EPOR ⁶
ETV6 ⁵	EZH2 ³⁻⁵	FBXW7 ¹	FIGNL1 ⁶	FLT3 ⁵
FOXO1 ³	HIST1H1E ¹	IKZF1 ⁵	IKZF2 ⁶	IKZF3 ^{1,6}
IL2RB ⁶	IL3RA ⁶	IL7R⁵	JAK1 ^{1, 5}	JAK2 ^{1,5}
JAK3⁵	KRAS ^{1,5}	MEF2B ²⁻⁴	MGA ¹	KMT2A ^{1,5}
KMT2D ¹⁻⁴	MYC ^{3, 5}	MYD88 ¹⁻⁴	NF1 ^{1,5}	NFKBIE ¹
NOTCH1 ¹⁻⁴	NOTCH2 ^{2,4}	NRAS ^{1, 5}	P2RY8 ⁶	PAG1⁵
PAX5 ^{1,5}	PIM1 ^{1,4}	PTEN ³⁻⁵	PTPN11 ^{1,5}	POT1 ¹
RB1 ^{1,5}	RPS15 ¹	RUNX1 ⁵	SAMHD1 ¹	SETD2 ^{1,5}
SF3B1 ^{1,2}	SH2B3 ⁶	SHOX ⁶	TNFRSF14 ^{3,4}	TP53 ¹⁻⁵
TYK2 ⁶	UBR5 ²	WHSC1 ²	XPO1 ¹	ZMYM3 ¹
exon-proximal probes 3´UTR region included introns included				



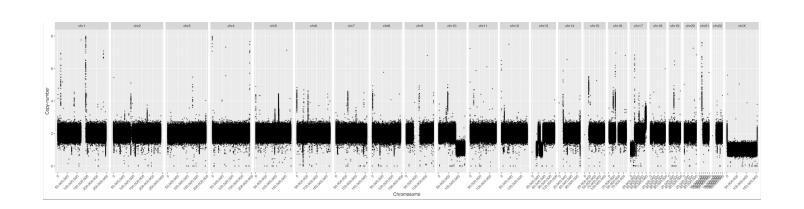

according to SNP probe density

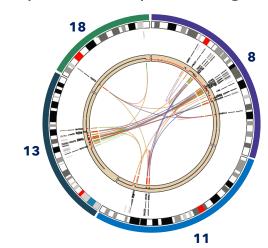
Whole exome sequencing (WES)

- Mainly experimental approach for exploring unknown variants
- Used in
 - genetic counseling for identification of causative variants
 - discovery of novel genetic markers
 - searching for treatment targets



WES - case report of Shwachman-Diamond syndrome


- a multisystem autosomal recessive disorder
- clinical features: pancreatic exocrine insufficiency, hematologic dysfunction, and skeletal abnormalities
- haematological malignancies (e.g. myelodysplastic syndrome and acute myeloid leukemia) occur in one third of patients
- homozygous or compound heterozygous variations in SBDS gene



Whole genome sequencing (WGS)

- Mainly experimental method for exploring unknown variants
- Applications similar to WES, additional information about non-coding regions and chromosomal abnormalities
- Typicall sequencing coverage $\sim 30-100x$ detection of clonal or germline mutations
- Shallow sequencing (~ 0.5-10x coverage) genome-wide detection of chromosomal abnormalities, low yield of mutation detection
- In clinical practise a potential benefit of combination of shallow and panel sequencing

The end...

Contact:

karla.plevova@mail.muni.cz or plevova.karla@fnbrno.cz

CEITEC MU A35

Internal Medicine - Hematology and Oncology, University Hospital Brno

Thank you for your attention!