Medical Genetics

Michael Doubek

Why medical genetics

Genome role in diagnostics, therapy and prevention

= application in medical practice

It is possible to implement into practice only what I know and what I have in mind

What you should already know

> What is a gene

- genes: structural for functional RNAs
- housekeeping genes
- gene expression
- exones, intrones, non-transcribed regions, promotors

Informational macromolecules

> Transcription, alternative splicing, translation

> Chromosomes

What is a DNA?

cold ethanol + salt + detergent > 1 m DNA

Věda je zábava, Svojtka & Co, 2015

Kočárek, 2013

Cavendish Laboratory and The Eagle Pub Watson + Crick + Wilkins + Franklin

Using results without permit Eugnenics Black men's IQ

Cavendish Laboratory and The Eagle Pub Watson + Crick + Wilkins + Franklin

Genetics: study of genes, genetic variation, and heredity in living organism

Genome: complete set of DNA within a single cell of an organism

Genomics: focuses on the structure, function, evolution, and mapping of genomes

Genetics

Genome

> Genomics

Structural
(DNA, chromosomes)
Functional
(RNA, gene expression)
Comparative

Genetics

Genome

Genomics

> Microbiome

> Transcriptome

> Epigenetics

GeneticsGenome

Genomics

> Microbiome *

Community of microorganisms inhabiting a particular environment

> Transcriptome

> Epigenetics

Genetics

Genome

Genomics

> Microbiome

> Transcriptome

> Epigenetics

Set of all RNA molecules in one cell or a population of cells in certain time

Genetics ➢ Genome Genomics Microbiome > Transcriptome > Epigenetics

Study of heritable changes in gene function that do not involve changes in the DNA sequence

What is a genome?

male	female									
39	2	89 3	65 4	5		XX 2	XX 3	ቆሽ 4	8	
88	88	36	ăă	88	\$X	Ħ %	хă	xx	22	
6	7	8	9	10	6	7	8	9	10	
88	ភ័ត	ŏŏ	åö	ด้ตั้	**	ត័ត	äŏ	ด้ก้	កំត	
11	12	13	14	15	11	12	13	14	15	
75	**	22	**	**	**	*	ቆአ	**	XX	
16	17	18	19	20	16	17	18	19	20	
XX	**	6 m			XX	**	22			
21	22	ΧY			21	22	х	X		

Human genome: 3.2 x 10⁹ bp, ~ 20,000 genes

What is a genome?

male	female									
39 1	2	8) 3	65 4	88 5		XX 2	XX 3	እሽ 4	XX 5	
80 6	88 7	% 8	йй 9	88 10	6	ሽ ሽ	XÄ 8	XX 9	XA 10	
88	ñø	ŏŏ	åö	àà	**	៥ភ	86	ด้ด้	ňň	
11	12	13	14	15	11	12	13	14	15	
72	**	ää	**	**	**	Bň	ភភ	**	**	
16	17	18	19	20	16	17	18	19	20	
XX	**	6.			**	**	à			
21	22	ΧY			21	22	х	Х		

Nucleotide polymorphism

- Single Nucleotide Polymorphisms SNP
- Structural variations
 - Copy Number Variations CNV
 - Short Tandem Repeats STR (2-5)

Human genome: 3.2 x 10⁹ bp, ~ 20,000 genes

Human genome was published in 2001

J. D. Watson

Individual sequences of human genomes were published in 2007 and 2008

C. Venter

J. D. Watson

Individual sequences of human genomes were published in 2007 and 2008

Difference in 7648 amino acid substitutions

C. Venter

J. D. Watson

Individual sequences of human genomes were published in 2007 and 2008 The 1000 genome project published in 2010

Moore's law (1965): "The number of transistors (hence the processing power) that can be squeezed onto a silicon chip of a given size will double every 18 months".

Postgenomic era

- Genomes were described
- > Ongoing genomes annotations

from phenotype to genotype

from genotype to phenotype

Modern techniques of genome analysis

NGS – flexibility

whole genome

3 200 000 000 bp 30 x coverage exome

20 000 genes 100 x coverage targeted genes or hotspots

< 100 genes ≥ 1000 x coverage

Whole-Genome Sequencing

Genomic DNA

... TATGCGATGCGTATTTCGTAAA....

Generating a Person's Genome Sequence

Break genome into small pieces

Capture library

Generate millions of sequence reads

Align sequence reads to establish reference sequence

Deduce starting sequence and identity differences from reference sequence

Whole-Exome Sequencing

Mutation vs. human genome variability

vs. human genome variability

- Every 1000th base could be mutated \Rightarrow 3.2 x 10⁶ variants
- One men has approx. 0.5 x 10⁶ variants
- Exome analysis (1.5% of genome) \Rightarrow tens thousands of variants

Which of the found variants is the disease causing one?

vs. human genome variability

- Every 1000th base could be mutated \Rightarrow 3.2 x 10⁶ variants
- One men has approx. 0.5 x 10⁶ variants
- Exome analysis (1.5% of genome) \Rightarrow rs thousands of variants

Which of the found variants is the one?

mutation frequency $1.1 - 1.3 \times 10^{-8}$

vs. human genome variability

- Every 1000th base could be mutated \Rightarrow 3.2 x 10⁶ variants
- One men has approx. 0.5 x 10⁶ variants
- Exome analysis (1.5% of genome) \Rightarrow tens thousands of variants

mutation x polymorfisms

d variants is the disease causing

Mutation vs. human genome variability

Mutations: spontaneous vs. induced

gene vs. chromosomal

Mutations: missense nonsense (terminating triplet) same sense frameshift

vs. human genome variability

Single nucleotide polymorphisms (SNPs)

cgcgcggcctcctccttgtggccatcctggtcctcctaaaccacctggac

cgcgcggcctcctccttgtggtcatcctggtcctcctaaaccacctggac

Insertions/deletions (indels)

cgcgcggcctcctccttgtggccatcctggtcctcctaaaccacctggac

cgcgcggcctcctccttgtgg-----ctggtcctcctaaaccacctggac

Mutation vs. human genome variability

Microsatelites (STR)

cgcgcggcctcctccttgtggcacacacacacacacatcctggtcctcctaaaccacctgga

cgcgcggcctcctccttgtggcacacacacacacatcctggtcctcctaaaccacctgga

Copy number variants (CNV)

>1 kb – 1MGb
Mutation vs. human genome variability

Sickle-cell anemia

Mutation vs. human genome variability

Positive mutations

Germinal vs. somatic mutations

Germinal vs. somatic mutation

Germinal mutation

Somatic mutation

Are we Homo sapiens?

Are we Homo sapiens?

Denisova hominins, 41 000 years ago mtDNA

Reich a kol. Nature 2010

Key

Maximum Sea Level during the Ice Age

Today – modern Homo sapiens Neanderthal Denis6 an Homo heidelbergensis 1 mill on years ago Homo erectus 2 million years ago Africa Europe & Central & Near East SE Asia

Are we Homo sapiens?

Ancient genomes analysis

Genome from the Younger Stone Age and Iron Age - Zagros, Iran

Broushaki a kol., Science 2017

Two ancient genomes in modern humans

Broushaki a kol., Science 2017

Famous ancient genomes

Őtzi

Cheddar man

Origin based on mitochondrial DNA

Mitochondrial and Y-inheritance

The seven daughters of Eve

The seven daughters of Eve

- mitochondrial Eve (140 000 years ago in Ethiopia)
- > 7 main mitochondrial haplotypes in Europe
- > 29 haplotypes worldwide

Results are not as accurate as from other methods – mtDNA is very similar

offspring of the mitochondrial Eve may still live

Bryan Sykes, 2004

The seven daughters of Eve in the Czech population

- Helena 43.51% (dominant lineage from Polland and european part of Russia)
- > Ursula 17.6% (mainly UK and Scandinavia)
- Tara 11.17%
- Jasmine 8.78%
- Katrine 5.89% (Ashkenazi Jews)
- > Velda 4%
- Xenia 3%

The seven daughters of Eve after the Ice Age

The seven daughters of Eve after the Ice Age

The role of genome in the disease onset

Mendelian hereditary diseases 8%

Multifactorial 90%

Others 2%

The role of genome in the disease onset

Mendelian hereditary diseases 8%

- > Multifactorial 90%
- Others 2%

⇒ genetic background plays almost always a role in the disease onset

Inheritance types

Inheritance types

Mendelian

monogenic: one gene \Rightarrow one feature

X-linked and Y-linked (sex-linked disorders)

Polygenic several genes \Rightarrow one feature

Mitochondrial

Environmental factors

What is the procedure of hereditary diseases tracing?

> family studies:

pedigree monozygous twins odds ratio relative risk

> disease frequency in population

> molecular biology methods

> genetic linkeage and functional tests

Common ancestor

- two common ancestors in previous generation: parents
- 4 grandparents, 8 great-grandparents
- the number of ancestors in generation $n\ is\ 2^n$

- 40th generation (1000 years back): $2^{40} = 1.09 \times 10^{12}$
- so many people didn't live on this planet (7.0 x 10⁹)

Mitochondrial inheritance

Y-chromosome inheritance

Y-chromosome inheritance

What Y-chromosome carries on?

Autosomal dominant inheritance

Autosomal dominant inheritance

Autosomal recessive inheritance

Environmental factors

Monogenic disorders

How many monogenic disorders exist?

$\approx 1\ 000$

\approx 10 000

 \approx 100 000
How many monogenic disorders exist?

 $\approx 1\ 000$

\approx 10 000

 $\approx 100\ 000$

Recessive disorders

Dominant disorders

- hemochromatosis (1:10)
- mutation of factor V Leiden (1:20)
- > cystic fibrosis (1:25)
- > spinal muscular atrophy (1:40)

- > deafness
- polydactyly

- Huntington's Chorea
- > Li-Fraumeni syndrome
- breast and ovarian cancer

Origin by mutation type

Founder effect

> Small closed populations:

Ashkenazi Jews franco-Canadiens Iceland surroundings od Maracaibo lake...

Marriages of relatives

Consanguinity map

Consanguinity map

Consang Unkno <1 1-4 5-9 10-19 20-29 30-39 40-49 50+

Mandatory genetic testing of partners: Bahrajn Saudi Arabia (Iceland)

Consanguinity example

Consanguinity example

Homozygous mutation BLM gene c.1642C>T, p.(Gln548*)

Genetic diseases in Czech population

Nijmegen breakage syndrome = Seeman syndrome (NBS)

NBN gene for nibrin in 8q21 Heterozygotes 1:130-150 Common ancestor

Seemanová, 1985

Czech dysplasia

COL2A1 gene absence of ocular and orofacial anomalies shortening of third and/or fourth toes

How do we search for new genetic disorders?

Molecular biology methods

- > Analysis of known disease-associated genes
- Comparing genetic information of healthy and affected family members
- Looking for new variants and "new" genes
- Verification by functional tests

DNA variants and disorders

genes together with non-coding regions

> Genetic vs. nongenetic influences

- monozygotic: 100% of identical alelleles
- dizygotic: twins/siblings 50% of identical alelleles

➢ Genetic influence: (concordance in MZ and DZ twins):

Diabetes mellitus Schizophrenia Lupus Cleft Sclerosis multiplex

Are monozygotic twins genetically identical?

Clinical case: thrombocytopenia

ETV6

- Exome sequencing exome comparison of healthy and affected family members
- variant in gene *ETV6*: p.W380R

Bioinformatics and biostatistics

- Mapping on a reference sequence (BWA-mem)
- build-up of two variant files (Samtools mpileup):

file – affected family members
file – healthy family members
Exclusion of population and familial variants (VarScan):
Selection of variants present only in affected family members

Identification of potentionally causal variants:

variant anotation (Annovar)

filters: coverage > 20

left only exonic, ncRNA exonic, downstream and upstream variants left out synonymous variants

excluded variants annotated in dbSNP dtb. with rsXXXXX ID

Bioinformatics and biostatistics

Annotated mutations

Variant frequency in population

Variant effect on the protein structure

Functional analysis of *ETV6* :

fluorescence microscopy

CYCS: p.T20I

What are the skills of clinical geneticist?

complex examination

> gene/s analysis indication

- exome sequencing
- genome sequencing
- functional tests

results interpretation

(from practitioners to clinical geneticists)

> therapeutic and preventive intervenation proposal

- respecting wishes of affected individuals together with ethical aspects

What are the skills of clinical geneticist?

complex examination

> gene/s analysis indication

- exome sequencing
- genome sequencing
- functional tests

results interpretation

(from practitioners to clinical geneticists)

> therapeutic and preventive intervenation proposal

- respecting the desire of affected individuals together with ethical aspects

Complex information analysis – complex is more than the sum of individual parts

Health

Why genetics?

> Disease diagnostics:

prenatal preimplantational genetic counselling

> Therapy:

pharmacogenetics pharmacogenomics immunogenetics

Prevention

Gene therapy, genome editing

Pompeie, 79AD

Made-to-order children?

