

Jakub Trizuljak

aVLKG7X1c Klinická genetika - cvičení

Student se naučí rozpoznat akutní život ohrožující stavy u diabetiků.

Student se naučí základní principy první pomoci u diabetiků.

 $N \vdash D$

Basic Dogmas of Oncology

I) Cancer is a genetic disease

Aberrant gene expression is a key step in the initiation, promotion and progression of the tumor

II) Carcinogenesis is a multistep process

Carcinogenesis is a multistep process involving alterations in at least two distinct classes of genes

III) Biological correlates of gene expression are identifiable

MOLECULAR BIOLOGY

- Cancer- Accumulation of series of mutations at various cancersusceptibility genes
- Most solid adult Tx requires 5-10 rate limiting mutations to acquire malignant phenotype
- Uncontrolled cell growth, invasion and metastasis

GATE-KEEPER GENES

- Oncogenesc-ras, k-ras
- Tumour Suppressor genes (Anti-oncogenes) p53, p21

CARE-TAKER GENES

 Stability genes/ DNA mismatch repair genes (DNA MMR)
 MLH1, MSH2, MSH6

MOLECULAR BIOLOGY

- · Everyone has two copies of each gene, one from each parent.
- · Most people are born with two normal copies of each gene.
- In hereditary cancers a person is born with changes or mutations in one copy of a cancer-susceptibility gene
- In the majority of these cases, the changes were inherited from the mother or father.
- Knudson's "two-hit" hypothesis- two hits/ mutations within a genome are necessary for a malignant phenotype to develop'
- Hereditary cancer- One hit is already present in every cell (from birth)- only one additional hit is necessary

Additional hit-

1.Gain in function- Proto-oncogene→ Oncogene

2.Loss of function- Inactivates Tx Suppressor gene

Sporadic cancer- Both hit occurs within a single somatic cell (after birth)

*Carl O. Nordling in 1953, Alfred G. Knudson in 1971

hereditary.

factors

GENETIC SUSCEPTIBILITY

- To describe the high risk for cancer in people with an inherited mutation
- People with an inherited gene change have a 50% chance of passing the mutation to each of their children
- Do *not* increase the risk for every type of cancer
- *Not everyone* who is born with a gene change will develop cancer

WHY?

- Second hit may not take place
- Incomplete penetrance- the AD gene is expressed at all or not
- Expressibility- Degree to which the phenotypes are expressed
- Co-dominance- alleles of a gene pair are different from each other but both are expressed

Hereditary Cancer Syndromes (most common)

Hereditary Breast and Ovarian Cancer Syndrome (BRCA1 and BRCA2)

HNPCC/Lynch Syndrome (MMR genes – MLH1, MSH2, MSH6, PMS2) and EPCAM gene

> FAP, AFAP and MAP (APC and MYH)

Malignant melanoma (p16, CDK4)

Hereditary Diffuse Gastric Cancer (CDH1)

Paraganglioma Syndromes (SDHB,C,D)

>Von Hippel Lindau (VHL)

Cowden Syndrome (PTEN)

Neurofibromatosis type 1 and type 2 (NF1 and NF2)

Juvenile Polyposis (BMPR1A, SMAD4, LKB1)

>Li-Fraumeni Syndrome (p53)

Hereditary breast and ovarian cancer: HBOC

Breast cancer

- the most frequent malignant cancer in female patients from Czech Republic
- rising incidence, declining mortality
- 5-10% of all breast carcinomas are hereditary

Ovarian cancer

- ovarian, fallopian and primary peritoneal tumors make up to 15% of all malignant cancers in women
- Czech Republic is on the čth palce in Europe in incidence
- mortality is relatively high !!!
- early tumors have good prognosis, however most cancers are diagnosed in stage III or IV

BRCA1 / BRCA2

- germline BRCA1/2 mutations cause increased risk of malignancy
- lifelong risk of breast cancer is 40-87% / 18-88%
- breast cancer risk until 40 years is19% for *BRCA1* mutation carriers, 12% for *BRCA2* mutation carriers
- lifelong risk of ovarian cancer is 22-65% / 10-35%
- increased risk of other malignancies (endometrial cancer, cervix cancer, colorectal carcinoma, prostate and stomach cancer)

BRCA1/2 DNA cell pathways

Nature Reviews | Cancer

PARP inhibitors

Other candidate genes

- There are further candidate genes increasing risko of hereditary breast and ovarian cancer
- **ATM**, APC, BARD1, BRIP1, CDH1, **CHEK2**, EPCAM, MLH1, MSH2, MSH6, MUTYH, NBN, **PALB2**, PMS2, PTEN, RAD50, RAD51C, RAD51D, STK11, **TP53**
- Gene panels:

CZECANCA: CZEch CAncer paNel for Clinical Application **BRONCO**- Brno ONCOlogical panel

 more than 300 genes associated with cancer susceptibility

BRCA1/2 mutation screening

- NGS next generation sequencing
- MLPA analysis of large mutations or deletions
- comparison of detected mutations in databases, in silico prediction

Example pedigree

- AD mode of inheritance
- ccurence of breast
 / ovarian cancer in
 younger pts.
- occurence of neoplasms in every generation
- Occurence of other malignancies
- asymptomatic carriers! (incomplete penetrance)

Empiric assessment of cancer risk - Claus model

TABLE III LIFE TIME RISK OF BREAST CANCER BASED ON FAMILY HISTORY OF BREAST CANCER CLAUS MODEL

	Age of Cancer Onset in J					Relative		
		20-29	30-39	40-49	50-59	60-69	70-79	
(1)	One affected first-degree relative	.211	.165	.132	.110	.096	.088	
(2)	One affected second-degree relative	.142	.120	.104	.094	.094	.083	
(3)	Two affected first-degree relatives							
	Age of onset in first affected relative	Age of onset in <u>second affected</u> relative						
	20-29	.484	.460	.434	.397	.354	.308	
	30-39	.460	.437	.399	.353	.302	.252	
	40-49	.434	.399	.354	.300	.246	.200	
	50-59	.397	.353	.300	.245	.195	.158	
	60-69	.354	.302	.246	.195	.156	.128	
	70-79	.308	.252	.200	.158	.128	.109	
(4)	Two affected second-degree relatives							
<u>۲</u>	Age of onset in first affected relative	Age of onset in second affected relative						
	20-29	.262	.256	.245	.231	.211	.189	
	30-39	.256	.245	.230	.200	.186	.162	
	40-49	.245	.230	.209	.184	.159	.137	
	50-59	.231	.200	.184	.158	.135	.117	
	60-69	.211	.186	.159	.135	.116	.103	
	70-79	.189	.162	.137	.117	.103	.094	
(5)	One affected first- and second-degree relative							
	Age of onset in <u>first-degree</u> relative	Age of onset in <u>second-degree</u> relative						
	20-29	.450	.433	.407	.369	.320	.264	
	30-39	.437	.414	.377	.329	.274	.219	
	40-49	.417	.383	.338	.281	.225	.177	
	50-59	.388	.343	.289	.233	.182	.143	
	60-69	.349	.296	.239	.188	.148	.120	
	70-79	.305	.248	.196	.154	.124	.105	

Adapted from Claus et al [59]. Srivastava A, McKinnon W, Wood ME: Assessing Risk of Breast and Ovarian Cancer in Women with Strong Family Histories. Oncology (Huntingt) 15(7):899-902, 2001.

Individual risk

- assessment based on family history, age of onset in relative and character of found mutation
- molecular genetic investigation is indicated by **clinical geneticist**
- ossibility of preimplantation genetic diagnostics

Useful links: <u>http://www.omim.org</u> <u>http://arup.utah.edu/database/BRCA/</u> <u>http://cancer.sanger.ac.uk/cosmic</u>

criteria for genetic testing - sporadic form

According to NCCN, NICE, ESMO, SLGG

- fallopian / ovarian / primary peritoneal cancer in any age
- **triple negative breast cancer** (ER, PR, HER2 neg.) <60 years, medullary carcinoma almost always consistent with TNBC
- unilateral breast cancer <45 years
 (<50 if no family history known)
- **two primary breast cancers**, first <50 years or both <60 years
- breast and pancreas cancer duplicity in any age
- male breast cancer in any age

criteria for genetic testing

– familial form

According to NCCN, NICE, ESMO, SLGG

3 relatives

• At least 3 direct relatives (including the proband) with breast cancer in any age

2 relatives

- 2 direct relatives (including the proband) with breast cancer, at least one diagnosed <50 years, or both <60 years
- Proband with breast cancer of any age and a direct relative with ovarian cancer, triple-negative breast cancer or medullar breast cancer, male breast cancer, pancreatic cancer or high/grade primary metastatic prostate cancer

Predictive testing of a known familial mutation above 18 yrs

Recommended screening of mutation carriers

- breast self-investigation since 18 years
- clinical breast investigation by a specialist twice a year since 25 years or 10 years earlier than the first occurence of breast/ovarian cancer in relatives
- 25-29 let: MRI and ultrasound, twice a years
- 30-65 let: **MRI** a mammography, twice a year
- gynecological investigation twice a year including transvaginal ultrasound
- further investigations (onkomarkers, screening for other malignancies, eg. gastroscopy, colonoscopy)

Prophylactic surgery

- **bilateral prophylactic adnexectomy**, at best in the age of 35-40 years in mutation carriers or immediately in elderly patients, possibility of hysterectomy is always considered (especially in *BRCA1* mutation carriers)
- **bilateral prophylactic mastectomy** at any time the patients asks, after consultation with oncologist and complex preventive investigations

Further considerations

- chemoprevention Tamoxifen
 Tamoxifen use can protect i *BRCA2* mutation carriers, but
 not in *BRCA1* carriers: *King et al., 2001*
- Tamoxifen increases survival by 1.8 years and quality adjusted survival by 2,7 years: *Grann et al., 2002*
- role of oral contraceptives? Low dose COC possibly protects against ovarian cancer in BRCA1/2 carriers but its role in breast cancer is uncertain (probably no increased risk)
- reprodukční rozhodnutí

The best protection is an early detection!

Hereditary nonpolypous colorectal carcinoma (NPCC) Lynch syndrome

Prof. Henry T. Lynch, MD. *1928 -

'Hereditary factors in cancer: study of two large midwestern kindreds', Arch. Intern. Med., 1966

Research of several families with colorectal and other cancers in US states Michigan and Nebraska

Lynch syndrome

- the most frequent congenital predisposition to colorectal cancer
- high penetrance, AD mode of inheritance
- approximately 2-5% of all colorectal cancers
- 28-75% risk of colorectal cancer in men,
 24-52% risk of colorectal cancer in women
- Risk of other tumors: endometrial cancer, ovarian cancer in women, gastric cancer, urinary tract cancers, hepatobilary cancers, cancer of small intestine, brain tumors

Lynch syndrome

Example pedigree

MLH1, MSH2, MSH6 and PMS2 genes

- mismatch repair genes
- system responsible for genetic stability in prokaryotes and eukaryotes
- recognition of mismatch nucleotides, excision and repair by DNA polymerases

Nature Reviews | Immunology

Indikation for mutation screening *MLH1, MSH2, MSH6, PMS2* Amsterdam criteria I/II

- at least three family members with colorectal carcinoma (or other tumor in HNPCC spectrum), one of thgem is a first degree relative to the other two
- at least two generations affected
- at least one patient younger than 50 years at the time of diagnosis
- the tumor has been verified by pathologist
- familiar adenomatous polyposis excluded

MUNI Med

Dispenzarization of asymptomatic mutation carriers

- total clinical examination by specialist once per year
- coloscopy once per 2 years, starting at 20 years, or 10 years earlier than onset of cancer in the youngest affected relative
- in women: gynaecological examination once per year, starting at 18 years, transvaginal USG + CA125 1/year starting at 20, 2/year starting at 35
- aspiration biopsy of endometrium 1/year starting at 30
- USG of the abdomen 1/year starting at 30
- urine stick and sediment examination 1/year starting at 30
- gastroscopy 1/3-4 years starting at 35
- further examinations according to the family history and considerations of the attending clinician

Familial adenomatous polyposis

Endoscopic findings in APC

Menzel, 1721: Multiple colorectal polypous lesions

Corvisart, 1824: Hypertrofic features in a sample of a 22-year old man with more than 20 "protrusions" of colon ascendens

Lockhart-Mummery, Dukes, 1925, Lancet: "Cancer and heredity"

Familial adenomatous polyposis

- occurrence of more than 100 adenomatous polyps of large intestine (or less in younger age)
- onset of polyp formation around 15 years, at 35 years in 95% of patients
- high risk of colorectal carcinoma, often multiple carcinomas, at a very early age
- penetrance of the disease near 100% until 50 years!!!
- APC gene classical/attenuated form (AD),
 MUTYH gene (MYH-asociated polyposis) (AR)
- other associated malignacies (desmoid tumors, hepatoblastoma)

MUNI Med

Macroscopic pathological sample of the large intestine affected by APC

APC gene

- tumor-supressor gene
- Wnt/ beta-katenin signal pathway inhibition

 plays a role in cell adhesion, migration, chromosome segregation, apoptosis and neural differentiation

MUNI

MED

Indication for APC mutation screening

- all forms of diffuse intestinal adenomatous polyposis
- predictive testing can be performed at any age , even in children!
- If there is a clinical suspicion for APC, all first degree relatives should undergo colonoscopy during the investigation og clinical (parents, siblings, in children aged 10-15 years sigmoideoscopy)

Dispensarisation of APC gene mutation carriers

- sigmoideoscopy every 1-2 years, starting at 10-12 years, colonoscopy after formation of first polyps
- If severe degree of polyposis is discovered, total colectomy or proctocolectomy is considered
- gastroduodenoscopy starting at 25 years, according to clinical degree
- USG investigation of abdomen 1/year in the first 10 years heaptoblastoma screening
- further investigations depending on family history

Li-Fraumeni syndrome

Joseph F., Fraumeni, Jr., MD. *1933 -

Frederick Pei Li, MD. 1940 - 2015

"Sarcomas of soft tissues, breast cancer and other neoplasms. A new familial syndrome?" Ann Intern Med 1969

Li-Fraumeni syndrome

- rare autosomal dominant cancer predisposition syndrome, 50% of individuals is affected by 40 years, up to 90% by 60 years of age
- 77% of malignancies belongs to these six types: breast cancer, sarkomas of soft tissues, osteosarcomas, brain tumors, adrenocortical carcinoma, and **leukemias**
- increased frequency of other malignancies
- classical LFS (*TP53* gene mutations)
 Li-Fraumeni-like syndrom (*CHEK2* gene mutations)

TP53 gene

- "guardian of genome"
- transcription factor responding to different forms of cellular stress
- regulates target genes, inducing cell cycle arrest, apoptosis, DNA repair,, cell senescence and changes in metabolism
- regulated by a list of up- and downstream genes

TP53 mutation screening criteria

(modified Li-Fraumeni syndrome criteria by Chompret)

- proband with a tumor of the LFS spectrum under 46 years plus at least one first- or second degree rleative with a LFS-associated tumor
- proband with multiple tu,mors, out of which at least two belong to the LFS-associated tumors, first of which was diagnosed under 46 years
- Proband with adrenocortical carcinoma or a patient with breast cancer diagnosed under 36 years, without a *BRCA1* or *BRCA2* gene mutation, regardless of family history

Selected dysmorphic syndromes associated with increased risk of malignancies

Syndrome	Gene	Asociované neoplazie			
Sotos syndrom	NSD1	leukemias, lymphomas			
Fanconi anemia	FANCA, FANCC, FANCD and other	hematological malignancies (MDS, leukemias)			
Ataxia teleangiectasia	ATM	chronic lymfocytic leukemia, lymphomas of childhood			
Nijmegen Breakage Syndrome	NBS	lymphomas (Burkitt lymphoma, DLBCL), breast cancer			
Bloom syndrome	BLM	Non-Hodgin lymphomas, breast cancer			

MED

Sotos syndrome

Nijmegen Breakage Syndrome

Bloom syndrome

MUNI MED

Lékařská fakulta Masarykovy univerzity 2021