Case report

Alagille syndrome

<u>Alagille syndrome</u> is a highly variable, autosomal dominant multisystem disease

- <u>Alagille syndrome 1</u>, ALGS1 (MIM # 118450), which is caused by a mutation in the *JAG1* gene on chromosome 20p12, with an incidence of 1:30,000 live births, 98% of patients with ALGS
- <u>Alagille syndrome 2</u>, ALGS2 (MIM # 610205), which is associated with a mutation in the *NOTCH2* gene on chromosome 1p12 and represents a rarer form of disability (1: 70,000 live births), 1-2% of patients with ALGS

The basic symptom of the syndrome is <u>a reduction of</u> <u>intrahepatic bile ducts</u> in combination with 5 diagnostic features:

- <u>Cholestasis</u> (jaundice with conjugated hyperbilirubinemia, ↑ GGT, ↑ Chol, ↑ TGL, 10-20% of patients with rapid progression of liver disease)
- <u>Congenital heart disease</u> (most often peripheral pulmonary stenosis, Fallot's tetralogy, pulmonary atresia, atrial or ventricular septal defect)
- <u>Skeletal abnormalities (most often butterfly vertebrae, vertebral fusion,</u> spina bifida occulta, hemivertebra, 12th rib anomalies)
- <u>Eye disorders (most often posterior embryotoxon prominence of the</u> Schwalbe's ring at the interface of the iris and cornea)
- <u>Characteristic appearance</u> of a triangular face with a wide forehead, deep set eyes, hypertelorism, lower set ears and a longer onion-shaped nose

• <u>3 of these 5 major characters must be</u> present to confirm the diagnosis

patient with ALGS, typical face

posterior embryotoxon

• bile duct paucity

• butterfly vertebrae

- About 39% of patients suffer from kidney problems, most often renal dysplasia
- Growth retardation
- Pancreatic insufficiency (40%)
- Hypothyroidism
- Recurrent infections
- Mental retardation and learning disabilities usually in patients with deletion 20p12
- Alagille syndrome is a genetically heterogeneous disorder

• We present phenotype of 4 probands with ALGS1, whose involvement was confirmed by molecular genetic examination

 Method: next generation sequencing technique (MiSeq, Illumina) followed by direct sequencing of PCR products on a genetic analyzer. At the genomic DNA level, the coding region of the JAG1 gene, including exon / intron boundaries, was sequenced. The obtained sequences were compared with the reference sequences of the JAG1 gene NG_007496.1 and NM_000214.2. The analysis of the found variants was performed on the basis of the reference database (http://www.ncbi.nlm.nih.gov/projects/SNP).

Phenotype of patients with ALGS1

Table 1 Clinical features present in carriers of JAG1 mutations											
Pacient	Diagnosis	Peculiar face	Cholestasis	Liver biopsy	Heart disease	Ocular	Skeletal	Renal	Others		
	Ane					anomalies	anomalies	anomalies			
	Лус					anomalics	anomalice	anomalics			
1	16 month	yes	yes	intrahepatic bile duct	peripheral pulmonary	no no	butterfly	no	learning disability		
				paucity	artery stenosis		vertebrae				
2	6 years	yes	yes	intrahepatic bile duct	peripheral pulmonary	no no	no	no			
				paucity	artery stenosis						
3	7month	yes	yes	intrahepatic bile duct	peripheral pulmonary	no no	no	ren	behavioral disorders		
				paucity	artery stenosis			arcuatus			
4	3 month	yes	yes	intrahepatic bile duct	peripheral pulmonary	embryotoxon	rib	cystic	hypothyroidism		
				paucity	artery stenosis	posterior	anomalies	disease	growth retardation		

Results of molecular genetic testing of the JAG1 gene

Table 2 M	lutations in JAG1 found in patients with Alagille syndrome					
Pacient	identified sequence variants	Mutation	Exon	cDNA	Protein	Mutation
		origin				type
1	gene JAG1 (NM_000214.2);c.3189dupG in heterozygous state	not	25	c.3189dupG	p.Asn1064Glufs*45	frameshift
	novel mutation, duplication	investigated				
2	gene JAG1(NM_000214.2); c.2039delG in heterozygous state	mother	16	c.2039delG	p.Gly680Alafs*63	frameshift
	novel mutation, deletion					
3	gene JAG1 (NM 000214.2);c.1913delG in heterozygous state	father	15	c.1913delG	p.Cys638Leufs*105	frameshift
	novel mutation, deletion					
4	$a_{2} = 1001 (NM, 000214, 2) = 22200 T = (Arg744Ter) is between goue state$	do povo	18	- 2220C>T	p.Arg744Ter	nonsense
4	substitution			0.2230021		
the c. nor	nenclature is based on the cDNA sequence NM_000214.2					

Family screening

- The mother of proband No. 2 was monitored at the Department of Gastroenterology for unexplained hepatitis
- Molecular genetic examination also confirmed ALGS1
- Cardiac examination revealed aortic valve insufficiency
- Another sibling molecular-genetically ALGS1 excluded
- **Importance:** diagnosis and genetic counseling in the family

- The care of these patients is multidisciplinary
- It includes a pediatrician, hepatologist, cardiologist, ophthalmologist, nephrologist, endocrinologist, nutritional therapist, radiologist, geneticist and, in some cases, a transplant team.

- Molecular-genetic examination X classical scoring system
- Genetic testing in <u>unclear cases</u>