Iron metabolism and its disorders

Physiological functions of iron

- Iron is present in haem
 - haemoglobin/myoglobin
 - cytochromes
 - enzymes
 - e.g. catalase, peroxidase, ribonucleotide reductase, nitric oxide synthase
 - Fe is necessary for the cell cycle (transition from $G1 \rightarrow S$ phase)
 - ROS formation in white blood cells
- Free Fe is highly reactive it catalyses Fenton reaction
 - $Fe^{2+} + H_2O^2 \rightarrow Fe^{3+} + OH + OH$ -
 - most iron is in the complex form to minimize negative effects
 - with organic anions
 - with ferroproteins
 - stored bound to ferritin (or hemosiderin)
- As no specific excretory mechanism exists, the absorption of Fe is tightly regulated

Fe balance

- 35 45mg of Fe per 1 kg of body weight in an adult
 - 60 70% is part of Hb in erythrocytes
 - 10% is contained in myoglobin, cytochromes and iron-containing enzymes
 - 20 30% is stored bound to ferritin and hemosiderin in hepatocytes and macrophages
- The total amount of Fe is constant in an adult, there is a balance between the intake and the losses
 - the daily supply of food contains approximately 10 - 20mg of iron
 - only 5 10% of iron gets to organism
 - average daily losses are 0.5-1mg in men 1-2mg in women of fertile age
- Intake of iron occurs in the duodenum and proximal jejunum

Distribution of iron in the organism

- circulation of Fe and its cellular uptake
 - transferrin liver-produced protein with 2 binding sites for Fe³⁺
 - the ratio of monoferric to diferric transferrin is normally approx.
 2:1 (30% saturation)
 - transferrin receptors (TfR1 and 2) at cellular membrane enables the cellular uptake of Fe driven by momentary needs
 - It is most abundant in the membrane of erythroblasts, but not mature erythrocytes
- storage and recycling of Fe
 - In the liver (hepatocytes) and in macrophages
 - Fe is bound to cellular or serum ferritin (up to 4000 Fe atoms)
 - hemosiderin (aggregated molecules of of ferritin)
- excretion
 - There is no specific mechanism of iron excretion
 - desquamation of cells (GIT, skin)
 - menstruation in women

Absorption of Fe and its release into the circulation

Maturation of the enterocyte

Post-transcriptional regulation of gene expression by Fe

- Fe binds to IRP (iron-responsive proteins) and deactivates them by changing their conformation
- When intracelular levels of iron are low, IRP bind to IRE (ironresponsive elements) at 5' or 3' untranslated region of mRNA
 - 5' IRE (low translation)
 - e.g. ferritin
 - 3' IRE (inhibits mRNA degradation \rightarrow high translation)
 - e.g. DMT1 or TfR

Iron metabolism regulation

Hepcidin – blocks the transport of Fe from enterocyte

Disorders of iron metabolism

- Iron deficiency anemia (IDA)
 - decreased absorption / increased losses
 - $-\downarrow$ ferritin, \uparrow transferrin, \downarrow transferrin saturation, \uparrow sTfR
- Anemia of chronic diseases (ACD)
 - normal total amount of Fe in organism, but Fe is stored in macrophages instead of being part of haem
 - − \uparrow ferritin, \downarrow transferrin, \sim/\downarrow transferrin saturation, \downarrow sTfR

Hemochromatosis

Acquired

- increased parenteral intake
 - repeated transfusions
 - excessive supplementation rare
- excessive hemolysis
 - hemolytic anemias often treated by transfusions

• Hereditary

- excessive absorption
 - autosomal recessive monogenic disorder (1:200 400 in northern Europeans)
 - mutation in the HFE gene (6th chromosome) inducer of hepcidin expression
 - mostly C282Y or H63D mutations

Clinical presentation

- iron deposits in various organs (liver, heart, pancreas, joints) and their dysfunction
- skin pigmentation ("bronze diabetes")
- in most cases, non-specific symptoms are present (tiredness, hepatopathy, endokrinopathy, diabetes, artralgias...)
- treatment phlebotomy

