MUNI MED

Pathophysiology of age-related processes, aging, longevity, senescence, death

Petr Müller

Pathophysiology – lectures

What is ageing?

- Is ageing a disease?
- Which diasases are associated with ageing?

Mechanisms of ageing

- Regulation of aging at different levels of the human body organization
- Ageing of DNA
 - Methylation
 - Telomeres
- Metabolism and ageing
- Cellular senescence
- Organ ageing

Evolutionary mechanisms of ageing

• Genetics of ageing

Can we treat/ slow down ageing

- Experiments on model organisms
- Implications for healthy ageing

Is ageing a disease ?

Aging is the sequential or progressive change in an organism that leads to an increased risk of debility, disease, and death.

Programmed lifespan Encoded in our genome

Ageing associated diseases

Gompertz–Makeham law of mortality

Estimated probability of a person dying at each age, for the U.S. in 2003. Mortality rates increase exponentially with age after age 30.

Probability of death

The Gompertz–Makeham law states that the human death rate is the sum of an **age-dependent component** (the Gompertz function, named after Benjamin Gompertz), which increases exponentially with age and an **age-independent component** (the Makeham term, named after William Makeham).

THE HALLMARKS OF AGING

Cardiovascular system

- Hypertension
- Atherosclerosis
- Stroke, MI

CNS

- Dementia
- Neurodegenerative diseases

Musculoskeletal system

- Arthritis
- Muscle weakness

Cancer

Metabolism

- Decreased basal metabolism
- Obesity
- Diabetes mellitus type 2

DNA damage theory of aging

Telomere shortening and cellular senescence

Hayflick limit he typical normal human fetal cell will divide between 50 and 70 times before experiencing senescence.

Telomerase hTERT and cell immortalization

Low Density

Scale Bar = 100µm

Scale Bar = 100µm

Progeria Hutchinson-Gilford syndrome

- Autosomal dominant disease
- Mutation in Lamin A
- Altered histone modifications a and chromatin structure
- Genomic instability

Other DNA damage related premature ageing:

- Werner syndrome
- Cockayne syndrome

Ageing and epigenetics

Differentiation

Human tissues are composed of differentiated cells The daughter cells inherit the basic properties from parental cells

Epigenetics definitions and mechanisms

Epigenetics is the study of heritable phenotype changes that do not involve alterations in the DNA sequence.

Epigenetics most often involves changes that affect gene activity and expression, but the term can also be used to describe any heritable phenotypic change.

Mechanisms:

- Covalent modifications
- RNA transcripts
- MicroRNAs
- mRNA
- sRNAs
- Prions
- Structural inheritance
- Nucleosome positioning
- Histone variants
- Genomic architecture

DNA methylation

- process by which methyl groups are added to the DNA molecule.
- Methylation can change the activity of a DNA segment without changing the sequence

In mammals however, DNA methylation is almost exclusively found in CpG dinucleotides, with the cytosines on both strands being usually methylated.

CpG islands are usually defined as regions with:

- 1) a length greater than 200bp,
- 2) a G+C content greater than 50%,
- 3) a ratio of observed to expected CpG greater than 0.6,

DNA methyltransferases (in mammals)

- 1. maintenance methylation (Maintenance methylation activity is necessary to preserve DNA methylation after every cellular DNA replication cycle).
- 2. de novo methylation

DNMT3a and DNMT3b

the de novo methyltransferases that set up DNA methylation patterns

DNMT1

- maintanance

Model of DNMT3A activity. The DNMT3A protein complex is associated at promoters of silent genes in a complex with histone methyltransferase (HMT), histone deacetylase (HDAC) and DNA methyltransferase 3L (DNMT3L). These promoters are marked by DNA methylation, histone deacetylation and histone 3 lysine 9 methylation (K9me3).

DNA demethylation

- TET enzymes are a family of ten-eleven translocation (TET) methylcytosine dioxygenases.
- They are instrumental in DNA demethylation.

Oxoguanine glycosylase (OGG1) recruits TET enzyme

The implications of IDH mutations for cancer development and therapy

Nature Reviews Clinical Oncology volume 18, pages645–661 (2021)

Detection of methylation

1) Using methylation sensitive restriction endonucleases

McrBC is an endonuclease which cleaves DNA containing methylcytosine* on one or both strands

2) Using bisulfite conversion

Outline of the chemical reaction that underlies the bisulfite-catalyzed conversion of cytosine to uracil.

Methylation and aging

Horvath's clock Epigenetic clock

In humans and other mammals, DNA methylation levels can be used to accurately estimate the age of tissues and cell types, forming an accurate epigenetic clock

Horvath Genome Biology , **14**:R115 http://genomebiology.com//14/10/R115

RESEARCH

Open Access

DNA methylation age of human tissues and cell types

Steve Horvath^{1,2,3}

Chronological age (y-axis) versus DNAm age (x-axis) across different cells and tissues

Ageing methylation and cancer

Mutational signature associated with ageing

5-Methylcytosine

Thymine

Reprogramming to recover youthful epigenetic information and restore vision

https://doi.org/10.1038/s41586-020-2975-4 Received: 31 July 2019 Accepted: 22 October 2020

Published online: 2 December 2020

Check for updates

Yuancheng Lu¹, Benedikt Brommer^{2,3,11}, Xiao Tian¹¹¹, Anitha Krishnan^{3,4,11}, Margarita Meer^{3,6,11}, Chen Wang^{2,2}, Daniel L. Vera¹, Qiurui Zeng¹, Doudou Yu¹, Michael S. Bonkowski¹, Jae-Hyun Yang¹, Songlin Zhou^{2,2}, Emma M. Hoffmann^{3,4}, Margarete M. Karg^{3,4}, Michael B. Schultz¹, Alice E. Kane¹, Noah Davidsohn⁷, Ekaterina Korobkina^{3,4}, Karolina Chwalek¹, Luis A. Rajman¹, George M. Church⁷, Konrad Hochedlinger⁸, Vadim N. Gladyshev⁵, Steve Horvath⁹, Morgan E. Levine⁶, Meredith S. Gregory-Ksander^{3,4,12}, Bruce R. Ksander^{3,4,27}, Zhigang He^{2,3,12} & David A. Sinclalr^{10,0,12,2} Changes to DNA methylation patterns over time form the basis of ageing clocks, but whether older individuals retain the information needed to restore these patterns—and, if so, whether this could improve tissue function—is not known.

- Ectopic expression of Oct4 (also known as Pou5f1), Sox2 and Klf4 genes (OSK) in mouse retinal ganglion cells restores youthful DNA methylation patterns and transcriptomes, promotes axon regeneration after injury, and reverses vision loss in a mouse model of glaucoma and in aged mice.
- The beneficial effects of OSK-induced reprogramming in axon regeneration and vision require the DNA demethylases TET1 and TET2.

Chromatine remodelation to DNA methylation

Gene symbol*	Class	Role in vivo	Mouse knockout phenotype	
Arf (Cdkn2a)	Protein kinase inhibitor	Negative regulator of proliferation	Increased tumorigenesis	
Ascl1	Transcription factor	Neural lineage specification	Impaired development of various brain centres; neonatal lethality	
Baf60c (Smared3)	Chromatin modulator	Neuron differentiation	Defective cardiogenesis and somitogenesis	
Bcl11b	Transcription factor	Fetal thymocyte development and survival	Prenatal and perinatal lethality; haematopoietic defects	
Brn2 (Pou3f2)	Transcription factor	Neuroectoderm specification	Perinatal lethality	
Cebpa	Transcription factor	Broad target range	Neonatal lethality; multi-organ defects	
Cebpb	Transcription factor	Immune and inflammatory response; brown fat specification	High neonatal hypoglycaemia and mortality	
Fgf1	Growth factor	Angiogenic	Normal	
Gata4	Transcription factor	Heart tube and foregut formation	Lethal; ventral defects	
Klf4	Transcription factor	Differentiation of epithalial cells	Perinatal death owing to skin defects	
Lin28	Transcription factor	Suppressor of microRNA biogenesis	Unknown	
Mafa	Transcription factor	Activates insulin gene expression	Diabetes and pancreatic islet abnormalities	
Mef2c	Transcription factor	Controls cardiac morphogenesis and myogenesis	Prenatal death and cardiovascular abnormalities	
Мус	Transcription factor	Broad action on cell cycle and growth	Prenatal lethality and growth defects	
Myt1l	Transcription factor	Pan-neural transcription factor with roles in neuronal differentiation	Unknown	
Nanog	Transcription factor	Imposes pluripotency on embryonic stem cells and prevents their differentiation	Early embryonic death	
Ngn3	Transcription factor	Neurogenesis and pancreatic endocrine cells specification	Deficiency of endocrine cells and insulin-producing cells; postnatal diabetes	
p38 mapk (Mapk14)	Protein kinase	Inflammation and response to stress	Embryonic to perinatal lethal with multi-system defects	
Pdx1	Transcription factor	Specifies early pancreatic epithelium	Postnatal lethality and abnormal pancreatic and liver development	
Oct4	Transcription factor	Crucial for early embryogenesis and for embryonic stem cell pluripotency	Peri-implantation lethality; failure to develop the inner cell mass	
Pu.1 (Spi1)	Transcription factor	Lymphoid-specific enhancer	Postnatal lethality and haematopoietic defects	
Rb1	Transcription factor and chromatin modulator	Key regulator of entry into cell division	Prenatal lethality and neuronal and haematopoietic defects	
Tbx5	Transcription factor	Mesoderm differentiation	Prenatal lethality and cardiovascular defects	

Milestones in epigenetic aging research discovery of unified theory of **DNA** methylation caloric restriction clock by methylated deep learning cytosine in DNA and longevity by D. Sinclair **DNA** methylation introduction of clock by Horvath the term sinale-aene single-cell "epigenetics" by mutation doubles multiomics of C. Waddington life in C. elegans aging cells 1947 1964 2004 2006 2016 2020 1993 1942 1948 2005 2013 2019 2021 FDA approval of first partial in vivo epigenetic drug caloric restriction reprogramming to extends life span ameliorate aging of mice discovery of discovery of partial role of histone Yamanaka factors reprogramming modifications for iPSC generation reverses vision for transcription

loss in aged mice

NATURE REVIEWS | GENETICS

The genetics of human ageing

David Melzer^{1,2*}, Luke C. Pilling^{1,2} and Luigi Ferrucci³

rsID (effect allele)	Effect ^a	Mapped genes	Gene name	Variant position	Associated disease		
Loci significant in both ^b GWAS meta-analyses ^{31,32}							
rs429358 (T)	1.06	APOE	Apolipoprotein E	Missense	Cardiometabolic, dementia		
rs10455872 (A)	0.76	LPA	Lipoprotein A	Intronic	Cardiometabolic		
rs8042849 (T)°	0.44	CHRNA3/5	Cholinergic receptor nicotinic $\alpha 3/5$ subunit	Intronic	Smoking related		
rs142158911 (A)	0.36	LDLR	Low-density lipoprotein receptor	Intergenic	Cardiometabolic		
rs11065979 (C) ^d	0.28	SH2B3, ATXN2	SH2B adaptor protein 3, ataxin 2	Intergenic	Cardiometabolic, cancer, autoimmunity ^e		
rs1556516 (G)	0.25	CDKN2B-AS1	CDKN2B antisense RNA 1	Intronic	Cardiometabolic, cancer ^e		
Loci significant only in the UK Biobank and LifeGen cohorts ³¹							
rs34967069 (T)	0.56	HLA-DQA1	Major histocompatibility complex, class II, DQ alpha 1	Intergenic	Autoimmune		
rs1230666 (G)	0.32	MAG13	Membrane associated guanylate kinase, WW and PDZ domain containing 3	Intronic	Autoimmune		
rs12924886 <mark>(</mark> A)	0.28	HP	Haptoglobin	Intergenic	Cardiometabolic		
rs1275922 (G)	0.26	KCNK3	Potassium two pore domain channel subfamily K member 3	Intronic	Cardiometabolic		
rs6224 (G) ^f	0.25	FURIN/FES	Furin, paired basic amino acid cleaving enzyme	Intronic	Cardiometabolic		
rs61348208 (T)	0.23	HTT	Huntingtin	Intronic	NR		
Loci significant only in the UK Biobank and AncestryDNA cohorts ³²							
rs7844965 (G) ⁹	0.25	EPHX2	Epoxide hydrolase 2	intronic	NR		
rs4774495 (G) ⁹	0.23	SEMA6D	Semaphorin 6D	intronic	NR		
rs599839 (G)ª	0.21	CELSR2, PSRC1	Cadherin EGF LAG seven-pass G-type receptor 2, proline and serine rich coiled-coil 1	intergenic	Cardiometabolic		
rs3131621 (G) ⁹	0.20	MICA/B	MHC class I polypeptide-related sequence A/B	intergenic	NR		
rs15285 (G) ⁹	0.18	LPL	Lipoprotein lipase	3' UTR	Cardiometabolic		
rs9872864 (G) ^h	0.14	IP6K1	Inositol hexakisphosphate kinase 1	intronic	NR		

Folding is entropy driven process

Protein homeostasis / proteostasis

Journal of

Cell Science

Sensors of proteotoxic stress

Metabolic stress

Mutation in HSF4 leads to decreased expression of crystalline genes in the lens, resulting in congenital cataracts

Crystalline alpha/beta (CRYAB, CRYAA)

A Homozygous Splice Mutation in the HSF4 Gene Is Associated with an Autosomal Recessive Congenital Cataract

Congenital Cataract in Australian Shepard

Alzheimer's disease.

APOE4 is the strongest risk factor gene for Alzheimer's disease

NH2

The evolution of prolonged life after reproduction

primitive indigenous people

Cooperation and cultural evolution allowed the expansion of Homo sapiens species

A model of the phylogeny of *H. sapiens* over the last 600,000 years (vertical axis).

Higher genetic diversity cohabitation of non-relatives

A timeline of evolutionary events \rightarrow

A timeline patterns of human disease risk \rightarrow

Cultural evolution

is the idea that human cultural change—that is, changes in socially transmitted beliefs, knowledge, customs, skills, attitudes, languages, and so on—can be described as a Darwinian evolutionary process

Slaves to wheat: How a grain domesticated us

Unlike animals, the survival of humans is currently much less determined by their genetic information.

Much more important to human evolutionary fitness has become information obtained non-genetically

Neolithic revolution, cooperation and cultural evolution

THE LANCET

Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis

Sara B Seidelmann, Brian Claggett, Susan Cheng, Mir Henglin, Amil Shah, Lyn M Steffen, Aaron R Folsom, Eric B Rimm, Walter C Willett, Scott D Solomon

Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study

Mahshid Dehghan, Andrew Mente, Xiaohe Zhang, Sumathi Swaminathan, Wei Li, Viswanathan Mohan, Romaina Iqbal, Rajesh Kumar,

Mechanisms of evolutionary adaptations in different animal species The traits related to common human diseases

- Cancer
- Ageing
- Pathogen/infection resistance

Cancer and Peto's paradox

- the incidence of cancer does not appear to correlate with the number of cells in an organism
- In order to build larger and longer-lived bodies, organisms required greater cancer suppression.

Lifespan x Body Mass

Gene Quantity in Cancer

HUMANS

VS.

ELEPHANTS

Mice altered to express "always-on" active TP53 exhibited increased tumor suppression ability, but also showed signs of premature aging. (TP53 cannot be the only explanation)

Available online at www.sciencedirect.com

ScienceDirect

Regeneration in the spiny mouse, *Acomys*, a new mammalian model

Aaron Gabriel W Sandoval and Malcolm Maden

NATURE : 26 September 2012 Skin shedding and tissue regeneration in African spiny mice (Acomys)

Check fo

- Scar-less regeneration
- Role of macrophage M1<M2
- Prevent fibrosis

Gompertz–Makeham law of mortality

Estimated probability of a person dying at each age, for the U.S. in 2003. Mortality rates increase exponentially with age after age 30.

Probability of death

The Gompertz–Makeham law states that the human death rate is the sum of an **age-dependent component** (the Gompertz function, named after Benjamin Gompertz), which increases exponentially with age and an **age-independent component** (the Makeham term, named after William Makeham).

Naked mole rats defy the biological law of aging (Heterocephalus glaber)

In contrast to the mortality hazards of other mammals, which increased with chronological age, the mortality hazard of naked mole-rats remained constant.

- rarely get cancer
- resistant to some types of pain
- survive up to 18 minutes without oxygen.

Balance of protein production and its regulation

AMPK signalling

https://www.cellsignal.com/pat hways/ampk-signaling-pathway

Autophagy

https://www.cellsignal.com/pathwa ys/autophagy-signaling-pathway

How can we affect protein homeostasis ?

- Georges Nógrády
- The Ayerst Pharmaceuticals team was able to identify a new antifungal compound in the soil samples that was produced by the bacterium Streptomyces hygroscopicus
- Identification of the mTOR Signaling Network
- Rapamycin's eventual development into a clinical compound (Rapamune), used to prevent organ transplant rejection and treatment for some cancers

https://www.bio-rad-antibodies.com/blog/history-of-rapamycin.html

Resetting ageing clock by somatic cloning

somatic-cell nuclear transfer (SCNT) has no obvious detrimental long-term health effects in a cohort of 13 cloned sheep

Cell taken from Nucleus female sheep A containing DNA extracted Egg develops into an Born to sheep C, embryo, which is placed in the lamb, Dolly, the uterus of sheep C is a clone of sheep A Nucleus and egg fused together Egg taken from Nucleus removed female sheep B

Dolly's clones ageing no differently to naturally-conceived sheep, study finds

Dolly the cloned sheep's early death left scientists wondering whether cloning causes premature ageing. Researchers now have their clearest answer yet

Debbie, Denise, Dianna and Daisy, who were born in July 2007 after being cloned from the same mammary gland cells used to make Dolly. Photograph: the University of Nottingham.

Epigenetic reprogramming and rejuvenation treatment

Growth hormone therapy

- anabolic
- rejuvenation

Received: 11 May 2019
Revised: 16 July 2019
Accepted: 4 August 2019

DOI: 10.1111/acel.13028
Aging Cell
WILEY

Reversal of epigenetic aging and immunosenescent trends in humans
Simple and a simple

- Increases calcium retention, mineralization of bone
- Increases muscle mass
- Promotes lipolysis
- Increases protein synthesis
- Stimulates the growth of all internal organs
- Reduces liver uptake of glucose
- Promotes gluconeogenesis in the liver
- Contributes to the maintenance and function of pancreatic islets
- Stimulates the immune system
- Increases deiodination of T4 to T3

It has been reported that 5% of male American high-school students used or have used hGH as an anabolic agent.

Laron syndrome

- growth hormone insensitivity
- growth hormone receptor deficiency (GHRD
- autosomal recessive disorder
- lack of insulin-like growth factor 1

Laron syndrome

Reduced linear growth, dwarfism low oxidative stress, anti-aging signaling low prevalence of acne, diabetes, cancer Increased linear growth, tall people high oxidative stress, pro-aging signaling high prevalence of acne, diabetes, cancer