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Pathophysiology of age-related processes,

aging, longevity, senescence, death

Pathophysiology — lectures
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What is ageing?
* |s ageing a disease?
* Which diasases are associated with ageing?

Mechanisms of ageing
* Regulation of aging at different levels of the human body organization
* Ageing of DNA
* Methylation
e Telomeres
Metabolism and ageing
Cellular senescence
Organ ageing

Evolutionary mechanisms of ageing
* Genetics of ageing

Can we treat/ slow down ageing
* Experiments on model organisms
* Implications for healthy ageing A




Is ageing a disease ?

Aging is the sequential or progressive change in an organism
that leads to an increased risk of debility, disease, and death.
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Gompertz—Makeham law of mortality

Estimated probability of a person dying at

each age, for the U.S. in 2003. Mortality rates Probability\of death

increase exponentially with age after age 30.
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The Gompertz—Makeham law states that the human death rate is the sum of an age-
dependent component (the Gompertz function, named after Benjamin Gompertz),
which increases exponentially with age and an age-independent component (the
Makeham term, named after William Makeham).
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Lifespan. .10 THE HALLMARKS OF AGING

CROWDSOURCING THE CURE FOR AGI

GENOMIC INSTABILITY
ar and mitochondrial DNA
radiation, and mutagens

TELOMERE ATTRITION
Wearing down of the protective caps
on chromosomes

EPIGENETIC ALTERATIONS

Modifications in gene expression, turning on
pro-aging genes and shutting down youthful
ones, leading to system-wide loss of function

LOSS OF PROTEOSTASIS

Deregulation of the mechanisms responsible for
protein folding and recycling, leading to the
accumulation of harmful by-products

DEREGULATED NUTRIENT SENSING
Deterioration of the cell’'s nutrient level response,
leading to impairments in energy production,cell
growth, and other essential functions

MITOCHONDRIAL DYSFUNCTION

Damage to mitochondrial DNA, resulting in reduced
efficiency in energy production, increased oxidative
stress, and the contamination of other mitochondria

STEM CELL EXHAUSTION
Depletion of stem cell reserves, leading to a weaker
immune system, and inadequate tissue repair

ALTERED INTERCELLULAR COMMUNICATION
Deregulation of the communication channels
between cells, causing chronic inflammation
and tissue damage
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Cardiovascular system
* Hypertension

e Atherosclerosis

e Stroke, Ml

CNS
* Dementia
* Neurodegenerative diseases

Musculoskeletal system
e Arthritis
 Muscle weakness

Cancer

Metabolism

* Decreased basal metabolism
* Obesity

e Diabetes mellitus type 2



DNA damage theory of aging
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Telomere shortening and cellular

senescence
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Hayflick limit he typical normal human fetal cell will divide between 50 and 70
times before experiencing senescence.



Telomerase hTERT and cell immortalization
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Progeria Hutchinson-Gilford syndrome

e Autosomal dominant disease

* Mutation in Lamin A

e Altered histone modifications a and
chromatin structure

* Genomic instability

Normal Prelamin A Processing Hutchinson-Gilford Progeria Syndrome
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Ageing and epigenetics

chromosome

© 2013 Encyclopzedia Britannica, Inc.

All cells of the body retain complete genetic
information that remains unchanged
throughout life.

Differentiation

Human tissues are composed of differentiated cells
The daughter cells inherit the basic properties from
parental cells
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Epigenetics definitions and mechanisms

Epigenetics is the study of heritable phenotype changes that Epigenetics most often involves changes that affect gene
do not involve alterations in the DNA sequence. activity and expression, but the term can also be used to

describe any heritable phenotypic change.

EPIGENETIC MECHANISMS HEALTH ENDPOINTS

are affected by these factors and processes: e Cancer .
¢ Development (in utero, childhood) ¢ Autoimmune disease M eCha nisms:
* Environmental chemicals ¢ Mental disorders
* Drugs/Pharmaceuticals ¢ Diabetes . [ .
s Asing * Covalent modifications
* Diet EPIGENETIC

CHROMATIN FACTOR .

. * RNA transcripts

CHROMOSOME @ METHYL GROUP . MicroRNAS
‘ * mRNA
DNA \
9 «}'I ' ,/" DNA methylation D | ° S R N AS
g Y, Methyl group (an epigenetic factor found 3
A in some dietary sources) can tag DNA H
: R and activate or repress genes. ® P rrons
nstone L | O : * Structural inheritance

* Nucleosome positioning

DNA accessible, gene active

* Histone variants

Histone modification

O E The binding of epigenetic factors to histone “tails”
Histones are proteins around which alters the extent to which DNA is wrapped around ° H H

DNA can wind for compaction and DNA inaccessible, gene inactive histones and the availability of genes in the DNA G enomic arc h Itecture
gene regulation. to be activated.




H

DNA methylation

process by which methyl groups are added to
the DNA molecule.
Methylation can change the activity of a DNA

segment without changing the sequence
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methylated
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In mammals however, DNA methylation is almost
exclusively found in CpG dinucleotides, with the
cytosines on both strands being usually
methylated.
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Typical mammalian DNA methylation landscape
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element ? methylated CpG

? unmethylated CpG

CpG islands are usually defined as regions with:

1) alength greater than 200bp,

2) a G+C content greater than 50%,

3) aratio of observed to expected CpG greater than 0.6,



DNA methyltransferases (in mammals)

1. maintenance methylation (Maintenance methylation activity is necessary to
preserve DNA methylation after every cellular DNA replication cycle).
2. de novo methylation

DNMT3a and DNMT3b
- the de novo methyltransferases that set up DNA
methylation patterns

DNMT1
- maintanance
' HDAC ,
HMNMT3L
K9me3
~® ® ’L—‘
cecata- ./K ;é o ;; o ;f
T _ S
G/,——GC————GCGCGCGCGC— - DNA methylation Histone H3
J Gcc,c;;f’c,c ! ; . Model of DNMT3A activity. The DNMT3A protein
e — complex is associated at promoters of silent genes in a
i ,GQ » protein complex . . .
it complex with histone methyltransferase (HMT), histone

deacetylase (HDAC) and DNA methyltransferase 3L
(DNMT3L). These promoters are marked by DNA
methylation, histone deacetylation and histone 3 lysine 9
methylation (K9me3).



DNA demethylation

5-methylcytosine
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The implications of IDH mutations for cancer development and therapy

a IDH mutations in cancer
SNUC
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Nature Reviews Clinical Oncology volume 18, pages645—661 (2021)



https://www.nature.com/nrclinonc

Detection of methylation

1) Using methylation sensitive
restriction endonucleases
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McrBC is an endonuclease which cleaves
DNA containing methylcytosine* on one or
both strands
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2) Using bisulfite conversion
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cytosine uracil
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Outline of the chemical reaction that underlies the bisulfite-catalyzed conversion of
cytosine to uracil.

Allele 1 (methylated)

---ACTCCACGG---TCCATCGCT---
——-TGAGGTGCC-— *AGGTAG%GA***

-—-AUT

-—--TGAGGTG

AUGG-—-TUUATCGUT---

m

Bisulfite treament
Alkylation
Spontaneous denaturation

-—--AGGTAGCGA--- -—-—-TGAGGTG

\/

Non-methylation-specific PCR
Methylation-specific PCR

'

Differentiation of bisulfite-generated polymorphisms

Allele 2 (unmethylated)

---ACTCCACGG---TCCATCGCT---
-——TGAGGTGCC---AGGTAGCGA---

-——AUTUUAUGG---TUUATUGUT---

---AGGTAGUGA---

NGS DATA
ANALYSIS
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Methylation and aging

Steve Horvath"*?

Horvath Genome Biology , 14R115
httpy//genomebiology.com//14/10/R115

RESEARCH Open Access

DNA methylation age of human tissues
and cell types

Genome Biology

Horvath's clock
Epigenetic clock

In humans and other mammals, DNA
methylation levels can be used to
accurately estimate the age of tissues and
cell types, forming an accurate epigenetic
clock

Age
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Ageing methylation and cancer
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Mutational signature
associated with ageing

IDENTIFICATION OF MUTATIONAL SIGNATURES
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Roles and Mechanisms of DNA
Methylation in Vascular Aging and
Related Diseases

Hui Xut2, Shuang Li'# and You-Shuo Liut.2*
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Article Nature | Vol 588 | 3 December 2020

Reprogramming torecover youthful
epigeneticinformation and restore vision

Changes to DNA methylation patterns over time form
the basis of ageing clocks, but whether older individuals
retain the information needed to restore these
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* Ectopic expression of Oct4 (also known as Pou5f1), Sox2 and KIf4 genes (OSK) in mouse retinal ganglion cells restores youthful DNA
methylation patterns and transcriptomes, promotes axon regeneration after injury, and reverses vision loss in a mouse model of

glaucoma and in aged mice.
* The beneficial effects of OSK-induced reprogramming in axon regeneration and vision require the DNA demethylases TET1 and TET2.



Chromatine remodelation to DNA methylation
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Table 1| Genes used to induce dedifferentiation, transdifferentiation or reprogramming

Gene symbal®
Arf (Celkn2a)
Asell

Bafiole (Smared 3)
Bell1b

B (PouFf2)
Cebpa
Cebph

Fafl
Garad

Kif4
Linzs

Mafa
Maf2e

Myc
Mytll

Manog
MNgn3
P38 mapk

(Mapk14)
Pax1

Pl (5pil)

Thx5

Class

Protein kinase inhilbitar

Transcription factor

Chramatin madulator
Transcription factor

Transcription factor
Transcription factor

Transcription facto

Grewth factor

Transcription facto
Transcription factor
Transcription facto
Transcription factor

Transcription factor

Transcription factor
Transcription factor

Transcription factor
Transcription factor
Protein kinase

Transcription factor
Transcription factor

Transcription factor

Transcription factor and

chromatin modulatar

Transcription factor

Raole in vive
Megative requlater of proliferation
Meural ineage specilication

Mewron differentiation
Fetal thymocyte development and sundival

Meuroectodenm specilication

Broad target rangs

Imnermane and inflarmmatory response: brawn
far specification

Angiogenic

Heart tube and forequt formation
Differentiation of epithalial cells
Suppressor of microRMA biogenesis
Activates insulin gene expression
Controls candiac morphogenssis and
Iyoenesis

Broad action on cell cycle and grawth

Pan-neural transcription factor with rolesin
neuronal diff erertiation

Imposes pluripotency an embryonic stem
cells and prevents their differentiation

Meurogenesis and pancreatic endocring
cells specification

Inflarnmation and response Do siress
Specilies early pancreatic epithelium
Crucial for sarky embryogensasis and for
ermbryonic stem cell pluripotency
Lymphaid-specific enhancer

ey regulator of entry into cell division

Mesoderm differentiation

Mousze knockout phenotype
Increased turmoarigenasis

Impaired developrment of various brain centres;
neanatal lethalivy

Defective candiogenesis and somitogensasis

Prenatal and perinatal lethality; haematopaietic
defects

Perinatal lethality
Meonatal lethality; multi-organ defects
High neonatal hypoaghycasmia and maortality

Morrmal

Lethal: ventral defects

Perinatal death owing to skin defects
Unknemwm

Diabetes and pancreatic islet abnormalities

Prenatal death and cardiovascular abnormalities

Prenatal lethalivy and growth defects
Urikriwm

Early embryonic death

Deficiency of endocrine cells and insulin-producing
cells; postnatal diaberes

Embryonic 1o perinatal lethal with multi-system
defects

Pastrniatal lethality and abrnormal pancreatic and Fver
development

Peri-implantation lethality: failure to develop the
inner cell mass

Pastniatal lethality and haematopoietic defects

Prenatal lethality and neuronal and haematopaietic
defects

Prenatal lethality and candiovascular defects



Milestones in epigenetic aging research
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NATURE REVIEWS | GENETICS

The genetics of human ageing

David Melzer'?*, Luke C. Pilling"? and Luigi Ferrucci®

rsID (effect allele) Effect® Mapped Gene name
genes

Loci significant in both* GWAS meta-analyses®"*

rs429358 (1) 1.06 APOE Apolipoprotein E

rs10455872 (A) 0.76 LPA Lipoprotein A

rs8042849 (T)° 0.44 CHRNA3/5 Cholinergic receptor nicotinic a3/5 subunit
rs142158911 (A) 0.36 LDLR Low-density lipoprotein receptor

rs11065979 (C)" 0.28 SH2B3,ATXN2  SH2B adaptor protein 3, ataxin 2

rs1556516 (G) 0.25 CDKN2B-AS1 CDKN2B antisense RNA 1

Loci significant only in the UK Biobank and LifeGen cohorts*

rs34967069 (T) 0.56 HLA-DQA1 Major histocompatibility complex, class Il, DO alpha 1

rs1230666 (G) 032 MAGI3 Membrane associated guanylate kinase, WW and
PDZ domain containing 3

rs12924886 (A) 0.28 HP Haptoglobin

rs1275922 (G) 0.26 KCNK3 Potassium two pore domain channel subfamily K
member 3

rs6224 (G)f 0.25 FURIN/FES Furin, paired basic amino acid cleaving enzyme

rs61348208 (T) 0.23 HTT Huntingtin

Loci significant only in the UK Biobank and AncestryDNA cohorts”

rs7844965 (G)¢ 0.25 EPHX2 Epoxide hydrolase 2

rs4774495 (G)9 0.23 SEMA6D Semaphorin 6D

rs599839 (G)® 0.21 CELSR2,PSRC1  Cadherin EGF LAG seven-pass G-type receptor 2,
proline and serine rich coiled-coil 1

rs3131621 (G)® 0.20 MICA/B MHC class | polypeptide-related sequence A/B

rs15285 ()8 0.18 LPL Lipoprotein lipase

rs9872864 (G)" 0.14 IPEK 1 Inositol hexakisphosphate kinase 1

Variant
position

Missense

Intronic
Intronic
Intergenic

Intergenic

Intronic

Intergenic

Intronic

Intergenic

Intronic

Intronic

Intronic

intronic
intronic

intergenic

intergenic
3"UTR

intronic

Associated disease

Cardiometabolic,

dementia

Cardiometabolic
Smoking related
Cardiometabolic

Cardiometabolic
autoimmunity®

Cardiometabolic

Autoimmune

Autoimmune

Cardiometabolic

Cardiometabolic
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Folding is entropy driven process E
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Protein homeostasis / proteostasis
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Sensors of proteotoxic stress

Metabolic stress

Increased temperature
Mutations and genomic instability
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Wild Type /) Mutant

-

HSF4

Mutation in HSF4 leads to decreased expression of crystalline
genes in the lens, resulting in congenital cataracts

Crystalline alpha/beta (CRYAB, CRYAA)

A Homozygous Splice Mutation in the HSF4
Gene Is Associated with an Autosomal Recessive
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Congenital Cataract in Australian Shepard




Alzheimer's disease.

Healthy brain size

— Shrunken brain with
Alzheimer disease Dying neuron

v:rith tangles

Healthy neuron—

v

B-Secretase

SAPPB  BCTF 99

v-Secretase

AP Plaques

Alzheimer’s Disease



APOEA4 is the strongest risk factor gene

for Alzheimer's disease
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Survivorship
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Cooperation and cultural evolution allowed
the expansion of Homo sapiens species

Eastern Western Central

0 EU rasia Africa Africa Africa Southern Africa
NS
x‘\’onﬂfr. =
100+
_ Higher genetic diversity
2004 % W — cohabitation of non-relatives
5, cooperation
=2
.
300+
saplens,
400-
X
o
3
500 ~
5
Homo S
heidelbergensis
600 < 7 1

A model of the phylogeny of H. sapiens over the last
600,000 years (vertical axis).



A timeline of evolutionary events =

,—‘ Deep evolutionary past }—\

e Self-replicating molecules
e Asymmetric cell division

Immune system
development

Multicellularity ’ ‘ Placentation

Divergence from
chimpanzee

I Recent human evolution I

Anatomically
modern humans

e Agriculture
e Urbanization

Population

e Bipedalism
® Increased brain size
e Gene duplications

QOut-of-Africa
bottleneck

Neanderthal
and Denisovan
introgression

expansion and
migration;
modern
environments

* Ageing

e Genetic disease Cancer Pre-eclampsia

¢ Autoimmune diseases
e Sickle cell disease
e Asthma

e Schizophrenia

e Autism spectrum disorder

e Epithelial cancers
e Pathogen response

Decreased genetic
diversity in non-Africans

¢ Allergies

e Neuropsychiatric disorders

e Chronic kidney
disease

e Obesity

 Type 2 diabetes

e HIV-1/AIDS

e Ulcerative colitis

e Coeliac disease

A timeline patterns of human disease risk 2




S T
Yuval Noah Harari

Cultural evolution ™Y

is the idea that human cultural change—that is, changes in socially Saplens
transmitted beliefs, knowledge, customs, skills, attitudes, languages, A Brief
and so on—can be described as a Darwinian evolutionary process History of

Humankind

Unlike animals, the survival of humans is currently much less
determined by their genetic information.

Much more important to human evolutionary fitness has
become information obtained non-genetically

Neolithic revolution, cooperation and cultural evolution

Slaves to wheat: How a
grain domesticated us




THE LANCET

Dietary carbohydrate intake and mortality: a prospective
cohort study and meta-analysis

Sara B Seidelmann, Brian Claggett, Susan Cheng, Mir Henglin, Amil Shah, Lyn M Steffen, Aaron R Folsom, Eric B Rimm, Walter C Willett,
Scott D Solemon

@ ® Associations of fats and carbohydrate intake with
- cardiovascular disease and mortality in 18 countries from
five continents (PURE): a prospective cohort study

Mahshid Dehghan, Andrew Mente, Xiache Zhang, Sumathi Swaminathan, Wei Li, Viswanathan Mohan, Remaina Igbal, Rajesh Kumar,
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Mechanisms of evolutionary adaptations in different animal species
The traits related to common human diseases

* Cancer

* Ageing

* Pathogen/infection resistance




Cancer and Peto's paradox

* theincidence of cancer does not appear to correlate with
the number of cells in an organism

* |In order to build larger and longer-lived bodies, organisms
required greater cancer suppression.

Expected
Cancer Rate

duck-billed
dinosaur

elephant

Cancer Prevelance

Evolutionary ,trade off“:

Body size vs. risk of cancer

! Observed Cancer Rate

!
3
1 2
R

%

LY

Lifespan x Body Mass



Gene Quantity in Cancer

VS.

average
lifespan
weight
number of cells
cancer
mortality
copies of p53

DNA Oncogene
Nutrient  Hypoxia damage expression

Ribosomal

deprivalion
dysfunction
Oxidative
Telomere

nraee / attrition
Mice altered to express "always-on" active

@4‘// \ TP53 exhibited increased tumor suppression

Senescence Metabohsm ab"lty, bUt aISO Showed S|gns Of premature
An iogenesis . .
giog CGWM Apomm T aging. (TP53 cannot be the only explanation)
arrest A DNA repair

Autophagy Migration

Tumor suppression



Available online at www sciencedirect.com Current Opinion in

. . Genetics
e, ScienceDirect & Development
ELSEVIER
Regeneration in the spiny mouse, Acomys, a hew
mammalian model M) |
Aaron Gabriel W Sandoval and Malcolm Maden i

____________ Sl — * Scar-less regeneration
- ‘ ' * * Role of macrophage M1<M?2

NATURE : 26 September 2012 * Prevent fibrosis
Skin shedding and tissue regeneration in African spiny mice (Acomys)




Gompertz—Makeham law of mortality

Estimated probability of a person dying at

each age, for the U.S. in 2003. Mortality rates Probability\of death

increase exponentially with age after age 30.

01

001 E

0.001

age-
independent
component

Chance of Death per Year

0.0001

0 20 40 60 80 100
Age (Years)

The Gompertz—Makeham law states that the human death rate is the sum of an age-
dependent component (the Gompertz function, named after Benjamin Gompertz),
which increases exponentially with age and an age-independent component (the
Makeham term, named after William Makeham).



Naked mole rats defy the biological law of aging
(Heterocephalus glaber)

In contrast to the mortality
hazards of other mammals,
which increased with
chronological age, the
mortality hazard of naked
mole-rats remained constant.

rarely get cancer

resistant to some types of pain
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Balance of protein production and its regulation

Interspecies and intraspecies

. fection competition
\njury In Lack of food
Growth factor AMPK Glucocorticoid . .
— tivati signallin Ml
mTOR sinalllng S e 's lg Autophagy
Make more protein Protein synthesis inhibition
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AMPK signalling

y4 \ ) JUTRY Low Glucose,

QR Hypoxia, Ischemia,

Vb_..—s—' i Heat Shock
Raceptor Recaptor

LB IO uonenba einoy

Autophagy

https://www.cellsignal.com/pat
hways/ampk-signaling-pathway
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Autophagy

Macroautophagy
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How can we affect protein homeostasis ?

* Georges Nogrady

* The Ayerst Pharmaceuticals team was able to identify a new
antifungal compound in the soil samples that was produced by the
bacterium Streptomyces hygroscopicus

* Identification of the mTOR Signaling Network
* Rapamycin’s eventual development into a clinical compound

(Rapamune), used to prevent organ transplant rejection and
treatment for some cancers

O. Treat cancer Immunosuppression
Prolonged lifespan m Impaired healing

OH
] -
O .
\ rapamycin |

https://www.bio-rad-antibodies.com/blog/history-of-rapamycin.html




Caloric
restriction

NATURE REVIEWS | MOLECULAR CELL BIOLOGY VOLUME 21 | MARCH 2020 | 137

The ageing epigenome and
its rejuvenation

Weiqi Zhang® >34, Jing Qu»*°, Guang-Hui Liug'-346*
and Juan Carlos Izpisua Belmonte”*
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» Extension of healthspan and lifespan
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Dolly’s clones ageing no differently to

Resettin g age in gcC lock naturally-conceived sheep, study finds
by s O m a t i c c I o n i n g Dolly the cloned sheep’s early death left scientists wondering

whether cloning causes premature ageing. Researchers now have
their clearest answer yet

somatic-cell nuclear transfer (SCNT) has no
obvious detrimental long-term health effects
in a cohort of 13 cloned sheep

O Debbie, Denise, Dianna and Daisy, who were born in July 2007 after being cloned from the same
mammary gland cells used to make Dolly. Photograph: the University of Nottingham.

Cell taken from Nucleus
female sheep A containing DNA
extracted
N Egg develops into an Born to sheep C,
\, . /,-' il iy embryo, which is placed in the lamb, Dolly,
o \ the uterus of sheep C is a clone of
kN = sheep A
. S s
Nucleusandegg o "\, | ® o '® |,
fused together Voo |
SR ol
Egg taken from Nucleus removed

female sheep B



Epigenetic reprogramming and rejuvenation treatment

A In vitro
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Growth hormone therapy it | it | et

Aging C o @ wiLey
. ORIGINAL ARTICLE
 anabolic SHEALATIES
o rejuvenation Reversal of epigenetic aging and immunosenescent trends in
humans
¢ rl'\\ Gregory M. Fahy' @ | Robert T. Brooke' @ | James P. Watson? | Zinaida Good®@® |
2L AVl Shreyas S. Vasanawala® @ | Holden Maecker® | Michael D. Leipold® @ |

2N D
Pituitary gland = . Vfi‘z,_} k. David T.S. Lin® ©® | Michael S. Kobor®® | Steve Horvath’ @

Growth

N _ : : N
ormone * Increases calcium retention, mineralization of bone

* Increases muscle mass
* Promotes lipolysis
* Increases protein synthesis
e Stimulates the growth of all internal organs
I 1) R ' * Reduces liver uptake of glucose
growth - * Promotes gluconeogenesis in the liver
’ * Contributes to the maintenance and function of
pancreatic islets
e Stimulates the immune system
WORLD ANTI-DOPING CODE * Increases deiodination of T4 to T3

PROHIBITED

LIST It has been reported that 5% of male American
high-school students used or have used hGH as an
anabolic agent.

This List shall come into effect on 1 January 2023.



Laron syndrome

* growth hormone insensitivity

* growth hormone receptor deficiency (GHRD
* autosomal recessive disorder

* lack of insulin-like growth factor 1

’ Normal growth

No feed-back

m inhibition of GH

”» . secretion

Normal growth Poor growth




Laron syndrome

A Laron syndrome B Western diet
with GHR* mutation High glycemic load Milk: whey proteins
Leu

Serotonln

Glucose GIP PRL

IGF 1
v
Insulin $ IGF-1 § lnsulm t IGF-1 t
Nuclear FoxOs t Nuclear FoxOs '.
Reduced linear growth, dwarfism Increased linear growth, tall people
low oxidative stress, anti-aging signaling high oxidative stress, pro-aging signaling

low prevalence of acne, diabetes, cancer high prevalence of acne, diabetes, cancer
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