MUNI MED

MIAM021p(s) **Analýza a** management dat pro zdravotnické obory – přednáška a cvičení (jaro 2024)

MICHAL SVOBODA

Institut biostatistiky a analýz LF MU svoboda@iba.muni.cz

Osnova

- Excel: opakování, příprava dat, základní vzorce
- Základy popisné statistiky
- Základní rozdělení pravděpodobnosti, testování hypotéz
- Parametrické testy
- Neparametrické testy
- Analýza kontingenčních tabulek
- Základy korelační analýzy a lineární regrese

Důležité informace

- Výuka: 11:00–13:30, D29/347-RCX2
- Materiály v IS
- Software: Microsoft Office Excel, Statistica
- Pro získání zápočtu/kolokvia je třeba:
 - 1. <u>Účast povoleny jsou 2 absence</u>

2. <u>Domácí úkoly – povoleno 1 neodevzdání</u>

 za účelem procvičení, dostanete zpětnou vazbu, na dalším cvičení se vrátíme, kdyby byl problém

3. Závěrečný úkol – praktické úkoly (povoleny materiály)

Organizace výuky

- 20. 2. Excel: opakování, příprava dat, základní vzorce
- 27. 2. Základy popisné statistiky
- 19. 3. Základní rozdělení pravděpodobnosti, testování hypotéz
- 26. 3. Parametrické testy
- 2. 4. Neparametrické testy
- 9. 4. Analýza kontingenčních tabulek, korelační analýza
- 16. 4. Ukončení předmětu, test

MUNI MED

Modelová rozdělení

Parametry rozdělení Přehled modelových rozdělení Logaritmicko-normální rozdělení

Výběrové rozdělení hodnot

Lze popsat a definovat pravděpodobnost výskytu X f(x) **φ(x)** X f(x) **φ(x)** Χ f(x) **φ(x)** Х Institut biostatistiky a analýz LF – Výuka – Biostatistika

6

Parametry rozdělení

- Proměnné můžeme charakterizovat parametry rozdělení
- Hlavní skupiny těchto parametrů můžeme charakterizovat jako ukazatele:
 - Středu (medián, průměr, geometrický průměr)
 - Šířky rozdělení (rozsah hodnot, rozptyl, sm. odchylka)
 - Tvaru rozdělení (skewness, kurtosis)
 - Kvantily rozdělení

Přehled modelových rozdělení

UNT

MED

MUNI MED

Normální rozdělení

Normální rozdělení Pravidlo 3 sigma Parametry normálního rozdělení Vizuální ověření normality dat

Normální rozdělení

- Nejklasičtějším modelovým rozdělením, od něhož je odvozena celá řada statistických analýz je tzv. normální rozdělení, známé též jako Gaussova křivka.
- Popisuje rozdělení pravděpodobnosti spojité náhodné veličiny, např. výška v populaci, chyba měření …
- Je kompletně popsáno dvěma parametry:
 - μ střední hodnota
 σ² rozptyl
 Označení: N(μ, σ²)

 $f(x)=rac{1}{\sigma\sqrt{2\pi}}\mathrm{e}^{-rac{(x-\mu)^2}{2\sigma^2}}$

Charakteristiky polohy

– Aritmetický průměr:

"Těžiště" dat – tzn. součet rozdílů podprůměrných hodnot od průměru je stejný jako součet rozdílů nadprůměrných hodnot od průměru

Prostřední hodnota

Průměr vs. medián

- POZOR: Průměr je silně ovlivněn extrémními hodnotami (tzv. odlehlá pozorování), medián jimi ovlivněn není.
- Průměr je vhodný ukazatel středu souboru u normálního, resp. symetrického rozložení, medián i v případě proměnných s neznámým rozdělením.
- V případě symetrického rozložení jsou průměr a medián v podstatě shodné, v případě asymetrického rozložení nikoliv!

Pravidlo 3 sigma

- V rozmezí $\mu \pm 3\sigma$ by se mělo vyskytovat 99,7 % všech hodnot

99,7 % všech hodnot

 Použití: zhodnotíme tvar rozdělení (pouze orientačně) a přítomnost odlehlých hodnot

Vizuální ověření normality

 Pro hodnocení tvaru rozložení lze využít histogram (nevýhoda: nutné určit "vhodný" počet sloupců)

- Vhodnější jsou:
 - Q-Q graf (kvantil-kvantilový graf)
 - P-P graf (pravděpodobnostně-pravděpodobnostní graf)
 - N-P graf (normálně-pravděpodobnostní graf)

Rozdíl mezi N-P, Q-Q, P-P grafem

15 Institut biostatistiky a analýz LF – Výuka – Biostatistika

MUNI Med

Asymetrie v diagnostických grafech

Konvexní křivka

> Výukové materiály: Výpočetní statistika Dr. Marie Budíková 2011

> > MUNI Med

MUNI MED

Základy testování hypotéz

Princip statistického testování hypotéz Pojmy statistických testů Normalita dat a její význam pro testování Ověření normality dat pomocí testu

Princip testování hypotéz

- Formulace hypotézy
- Výběr cílové populace a z ní reprezentativního vzorku
- Měření sledovaných parametrů
- Použití odpovídajícího testu závěr testu
- Interpretace výsledků

Možné chyby při testování hypotéz

 I přes dostatečnou velikost vzorku a kvalitní design experimentu se můžeme při rozhodnutí o (ne)zamítnutí nulové hypotézy dopustit chyby.

Význam chyb při testování hypotéz

Pravděpodobnost chyby 1. druhu

α

Pravděpodobnost nesprávného zamítnutí nulové hypotézy, hladina významnosti

Pravděpodobnost chyby 2. druhu

β

Pravděpodobnost nerozpoznání neplatné nulové hypotézy

Síla testu
 1-β

Pravděpodobnostně vyjádřená schopnost rozpoznat neplatnost nulové hypotézy

Možné chyby při testování hypotéz

MED

Možné chyby při testování hypotéz

22 Institut biostatistiky a analýz LF – Výuka – Biostatistika

MUNI MED

Způsoby testování: P-hodnota

- Významnost hypotézy hodnotíme dle získané p-hodnoty, která vyjadřuje pravděpodobnost, s jakou číselné realizace výběru podporují H₀, je-li pravdivá.
- P-hodnotu porovnáme s hladinou významnosti α
 (stanovujeme ji na 0,05, tzn. připouštíme 5% chybu testu, tedy, že zamítneme H₀, ačkoliv ve skutečnosti platí).
- P-hodnotu získáme při testování hypotéz ve statistickém softwaru.

Je-li **p** ≤ α , pak H₀ zamítáme na hladině významnosti α a přijímáme H_A.

Je-li **p** > α , pak H₀ nezamítáme na hladině významnosti α .

Poznámky k testování hypotéz

- Nezamítnutí nulové hypotézy neznamená automaticky její přijetí! Může se jednat o situaci, kdy pro zamítnutí nulové hypotézy nemáme dostatečné množství informace.
- Dosažená hladina významnosti testu (ať už 5 %, 1 % nebo 10 %) nesmí být slepě brána jako hranice pro (ne)existenci testovaného efektu.
- Malá p-hodnota nemusí znamenat velký efekt. Hodnota testové statistiky a p-hodnota mohou být ovlivněny velkou velikostí vzorku a malou variabilitou pozorovaných dat.
- Statistická významnost indikuje, že pozorovaný rozdíl není náhodný, ale nemusí znamenat, že je významný i ve skutečnosti. Důležitá je i praktická (klinická) významnost.

Testy normality

 Testy normality testují nulovou hypotézu, že není rozdíl mezi zpracovávaným rozložením a normálním rozložením. Vždy je ovšem dobré prohlédnout si i histogram, protože některé odchylky od normality, např. bimodalitu některé testy neodhalí.

Chí-kvadrát test dobré shody

Vhodný pro větší datové soubory. Srovnává pozorované četnosti s očekávanými hodnotami v třídách podobně jako při tvorbě histogramu. **Kolmogorovův - Smirnovův test**

Často používaný test, zaměřuje se zejména na distribuční funkci. Častěji se používá v jeho modifikaci – Lilieforsův test.

Shapirův-Wilkův test

Jde o neparametrický test použitelný i při velmi malých n (10) s dobrou sílou testu. Je zaměřen na testování symetrie.

MUNI MED

Praktické cvičení v programu Statistica

Datový soubor

MUNT

 $\mathbb{M} \vdash \mathbb{D}$

Rehabilitace po mozkovém infarktu

Data: 02_Biostatistika_Data02.sta* (24v by 407c)										
	Rehabilitace po mozkovem infarktu: data									
	1	2	3	4	5	6	7 8	3	9	10
	ID	Pohlavi	Vek	Etio l ogie	Lokalizace	Terapie	Komorbid I	Barthel_ind	Kategorie_zavislosti	p Ukoncen
1	1	muž	82	okluze net	mozkové tepny	jiná farmakolog	0	25	vysoce závislý	propuště
2	2	Žena	81	embolie	mozkové tepny	jiná farmakolog	2	20	vysoce závislý	přeložen
3	3	8 muž	55	okluze net	mozkové tepny	jiná farmakolog	0	35	vysoce závislý	propuště
4	4	l žena	46	embolie	mozkové tepny	intravenózní tro	0	20	vysoce závislý	propuště
5	5	i muž	76	okluze neł	mozkové tepny	jiná farmakolog	0	45	částečně soběstačný	propuště
6	6	5 muž	72	okluze net	mozkové tepny	jiná farmakolog	0	25	vysoce závislý	přeložen
7	7	′ muž	62	trombóza	mozkové tepny	jiná farmakolog	0	40	vysoce závislý	propuště
8	8	3 muž	64	trombóza	přívodní tepny	jiná farmakolog	0	15	vysoce závislý	propuště
9	g) žena	82	okluze net	mozkové tepny	jiná farmakolog	0	10	vysoce závislý	přeložen
10	10) muž	58	trombóza	mozkové tepny	jiná farmakolog	0	25	vysoce závislý	propuště
11	11	muž	84	okluze net	mozkové tepny	jiná farmakolog	0	40	vysoce závislý	propuště
12	12	2 žena	92	okluze net	mozkové tepny	jiná farmakolog	0	30	vysoce závislý	propuště
13	13	8 žena	79	embolie	mozkové tepny	jiná farmakolog	1	40	vysoce závislý	propuštč
14	14	l muž	69	trombóza	mozkové tepny	jiná farmakolog	3	45	částečně soběstačný	propuště 🗸
).

Rehabilitace po mozkovém infarktu

- Cvičný datový soubor obsahuje záznamy o celkem 407
 pacientech hospitalizovaných pro mozkový infarkt na neurologickém oddělení akutní péče, kde jim byla poskytnuta terapie pro obnovu krevního oběhu v postižené části mozku.
- Po zvládnutí akutní fáze byl u pacientů vyhodnocen stupeň soběstačnosti v základních denních aktivitách (ADL) pomocí tzv. indexu Barthelové (BI) a byli přeloženi na rehabilitační oddělení.
- Po dvou týdnech byl opět dle BI vyhodnocen stupeň soběstačnosti a pacienti byli buď propuštěni do ambulantní péče, nebo přeloženi na oddělení následné péče.

Rehabilitace po mozkovém infarktu

Sbírané informace:

- základní demografické údaje (pohlaví a věk),
- informace o samotné diagnóze mozkové příhody (etiologie a lokalizace uzávěru cévy),
- informace o léčbě (typ indikované terapie a výskyt komplikací)
- informace o způsobu ukončení rehabilitace.
- Stupeň soběstačnosti před rehabilitací byl dodatečně zjištěn z neurologie a na konci rehabilitace byl vyplněn nový dotazník pro určení výsledného indexu Barthelové.

Úkol č. 1 – Normálně rozdělená data

Zadání: "Ověřte normalitu věku při mozkovém infarktu."

Postup:

- 1. Srovnání průměru a mediánu (*Statistics Basic Statistics Descriptive Statistics Advanced*)
- 2. Krabicový graf (*Graphs 2D Box Plots*)
- 3. Histogram (*Graphs Histogram*)
- 4. Diagnostický N-P graf (*Graphs 2D Normal Probability Plots*)
- 5. Shapirův-Wilkův test nebo Lilieforsovy modifikace Kolmogorovova-Smirnovova testu (*lze provést např. těmito dvěma způsoby: 1*) v nastavení histogramu: záložka Advanced → Statistics: vybereme test, 2) v nastavení N-P grafu: záložka: Quick → Statistics: zaškrtneme test)

Úkol č. 1 – Řešení v programu Statistica

- V menu *Graphs* zvolíme *2D* a vybereme **Box Plots**
- V menu Graphs zvolíme Histogram

Quick Appearance Categorized Options 1 Options 2

Do not assign average ranks to tied observations

Normal Probability Plots

Graph type:

Normal

Statistics

4

Half-Normal Detrended

hapiro-Wilk test

V menu Graphs zvolíme 2D a vybereme Normal Probability Plots, na záložce Quick zaškrtneme test

P

none

Plot layout

Variables:

Úkol č. 1 – Výsledky v Statistica

Srovnání průměru a mediánu (1) Průměr a medián jsou téměř shodné (cca 71 let) a data jsou tedy nejspíš alespoň Descriptive Statistics (02 Biostatistik symetrická. Valid N Variable Median Mean Vek 407 70 58968 71 00000 Histogram Histogram of Vel Věl 02 Biostatistika Data02.s Diagnostický Vek = 407*5*Normal(Location=70 v*407c N-P graf **Krabicový graf** 100 Value !!! Shapirův Vormal¹ ilkův test 川 Expected <u>k</u> !!! Shapirův-75 80 85 90 95 30 35 40 45 50 55 60 65 70 Wilkův test !!! Vek: SW-W = 0,9967; p = 0,5800 Median = 71 25%-75% Vek: SW-W = 0.9967; p = 0.5800 Observed Value = (64, 78) T Non-Outlier = (45, 97)

(2) Symetrie je patrná i z krabicového grafu. Navíc histogram naprosto jasně odpovídá průběhu normálního rozdělení. Z N-P grafu také nejsou patrné odchylky od normality.

③ Na základě p-hodnoty 0,580 nezamítáme nulovou hypotézu o normalitě (tj. nezamítáme, že není rozdíl mezi pozorovanými daty a teoretickým normálním rozdělením, … tj. data jsou normálně rozdělená).

Úkol č. 2 – Odlehlá/chybná hodnota

Zadání: "Ověřte normalitu věku při mozkovém infarktu obsahující jeden překlep 40 → 400."

Postup (přepište hodnotu 40 na 400 a ke stanovení závěru opět použijte vybrané nástroje vhodné pro ověření normality):

- 1. Srovnání průměru a mediánu (*Statistics Basic Statistics Descriptive Statistics Advanced*)
- 2. Krabicový graf (*Graphs 2D Box Plots*)
- 3. Histogram (*Graphs Histogram*)
- 4. Diagnostický N-P graf (*Graphs 2D Normal Probability Plots*)
- 5. Shapirův-Wilkův test nebo Lilieforsovy modifikace Kolmogorovova-Smirnovova testu (*lze provést např. těmito dvěma způsoby: 1*) v nastavení histogramu: záložka Advanced → Statistics: vybereme test, 2) v nastavení N-P grafu: záložka: Quick → Statistics: zaškrtneme test) MUNI

Úkol č. 2 – Výsledky v Statistica

Úkol č. 3 – Asymetrická data

Zadání: "Ověřte normalitu indexu Barthelové (vyjadřuje stupeň soběstačnosti v základních denních aktivitách) na konci akutní hospitalizační péče o pacienty s mozkovým infarktem."

Postup:

- 1. Srovnání průměru a mediánu (*Statistics Basic Statistics Descriptive Statistics Advanced*)
- 2. Krabicový graf (*Graphs 2D Box Plots*)
- 3. Histogram (*Graphs Histogram*)
- 4. Diagnostický N-P graf (*Graphs 2D Normal Probability Plots*)
- 5. Shapirův-Wilkův test nebo Lilieforsovy modifikace Kolmogorovova-Smirnovova testu (*lze provést např. těmito dvěma způsoby: 1*) v nastavení histogramu: záložka Advanced → Statistics: vybereme test, 2) v nastavení N-P grafu: záložka: Quick → Statistics: zaškrtneme test)
 36 Institut biostatistiky a analýz LF – Výuka – Biostatistika

Úkol č. 3 – Výsledky v Statistica

