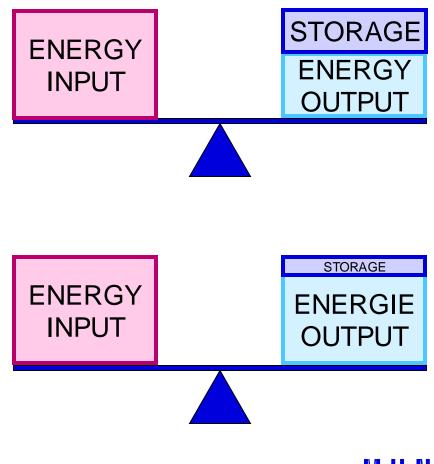


Energetic metabolism

Physiology II lecture (aVLFY0422p)

Tibor Stračina

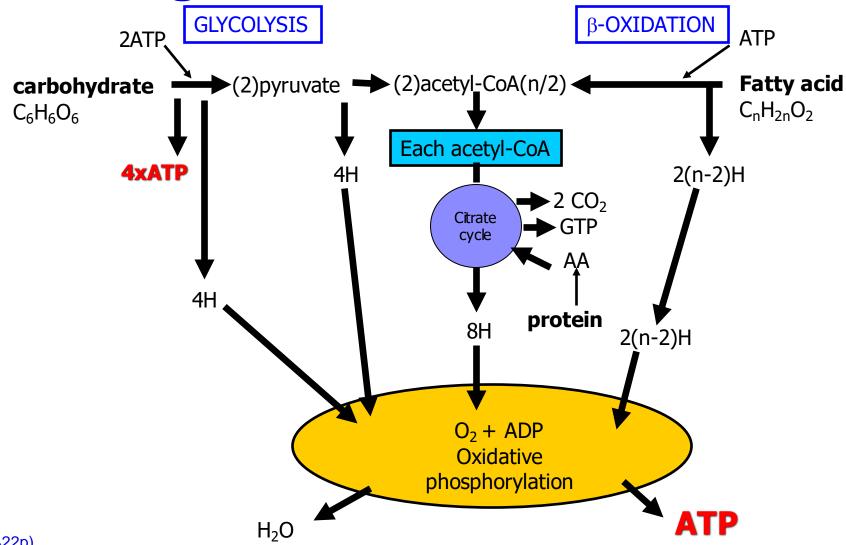

The presentation is copyrighted work created by employees of Masaryk University. Any unauthorized reproduction or distribution of the presentation or individual slides is against the law.

Energetic metabolism

- Energy input (external an internal sources)
- Energy output
- Energy stored

- INPUT = OUTPUT + STORAGE

Energy input


Basic substrates: carbohydrates, fats a proteins

- Energy is obtained by burning (oxidizing) substrates
 - carbohydrates 4,1 kcal/g
 - fats 9,3 kcal/g
 - proteins 5,3 kcal/g (in the body 4,1 kcal/g)

Source of substrates: food intake or mobilization of reserves

Nutrient burning

Energy output

- Basal metabolism energy expenditure to maintain homeostasis under basal conditions (vital function) – ~75% of AEE in a person sitting at rest
- Specific dynamic effect of food a small increase in energy expenditure after eating – ~7% of AEE in a person sitting at rest
- Thermoregulation
- Spontaneous motoric activity— ~18% of AEE in a person sitting at rest
- Physical work (exercise)

Energy output: Basal metabolism

The smallest amount of energy required to keep homeostasis (vital functions)
 under the basal conditions

- Minimally 12 hours at rest (no physical activity, no stress)
- No intense physical activity in the last 24 hours
- Minimally 12 hours no food intake
- Thermoneutral environment

BEE (basal energy expenditure) / BMR (basal metabolic rate)

Energy output: Specific dynamic effect of food

- Energy required to process food and subsequently absorbed nutrients
- Depends on composition of diet
 - For proteins, 30% of energetic content
 - For carbohydrates, 6% of energetic content
 - For fat, only 4% of energetic content
- For mixt diet, ~ 8-10% of energy contained in the food

Specific dynamic effect of the food = thermic effect of the food

Energy output: Thermoregulation

All thermoregulatory mechanisms (effectors) increase energy expenditure

- Energy is needed to warm up the body to decrease heat loss and to increase heat production
- Energy is needed to cool down the body to increase heat loss (and to decrease heat production)

Energy output: Spontaneous motoric activity and exercise

- Muscle work increases energy expenditure
 - AEE in supine position < AEE standing</p>
- Such increase is proportional to intensity of the activity
 - Sleeping 1.1x BEE; studying 1.4x; fast walking 2.4x; running 8.5-10x BEE
- After high-intensity exercise, energy expenditure is increased even after
 the end of the exercise (tens of minutes to tens of hours)
 - Oxygen debt (lactate metabolism), rebuilding of substrates in muscle (glycogen), reparation of muscles

Energy output: Somatic diseases

- Any somatic "damage" increases energy expenditure
 - After surgery 1.1x BEE; sepsis 1.3x; multiple injuries 1.5x; burns 50-60% 1.8x BEE
- An increase in body temperature by 1°C increases energy expenditure by
 10%
 - Core body temperature of 38°C 1.1x BEE; temperature of 40°C 1.3x BEE
- Some diseases specific effect on energy expenditure
 - Hyperthyroidism, hypothyroidism, chronic inflammatory diseases, tumors

Energy storage and transfers

Irregular energy intake and output – the need for energy storage

- Ready-to-use stock macroergic compounds
 - ATP
 - creatin phosphate
 - GTP, CTP, UTP, ITP

- Long-term storage stock substrates
 - Fat, proteins, glycogen

Adenosine trisphophate (ATP)

universal macroergic compound

Synthesis

- circa 63 kg/day (128 mol/day)
- oxidative phosphorylation
- glykolysis for short-term production only, production of lactate
- conversion from other macroergic compounds (creatine phosphate)

Use

macroergic bond splitting – efficiency is not 100%, heat release

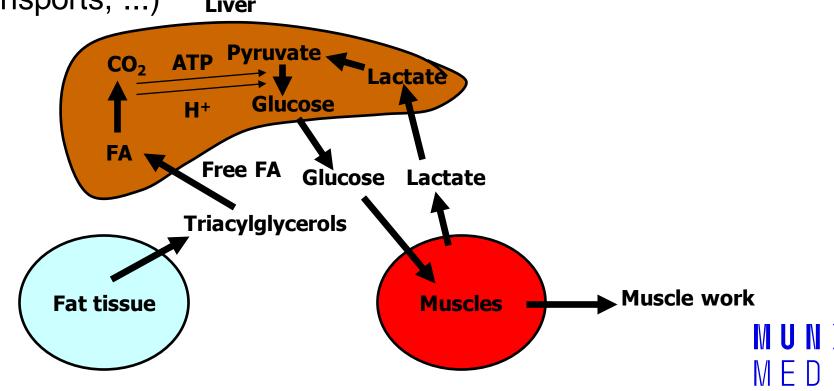
Storage substrates

Triacylglycerols in fat tissue (75% of stores) – up to 2 months

– Source: FA from food and esterification with α -glycerol phosphate or synthesis of FA from acetyl-CoA from glycolysis (conversion of sugars into a more efficient energy store = fat)

Proteins in skeletal muscles and blood plasma (25% of stores)

- Possible conversion to sugars (glukoneogenesis; stimulated by glucocorticoids)
- Blood plasma proteins quickly usable; leads to hypoproteinemia, drop of specific immunity
- Mobilization of muscle proteins leads to sarcopenia


Carbohydrates in form of glycogen (less than 1% of stores)

- Important for the CNS and covering energy demands during short-term physical work
- Glycogen stored in the liver (about 25%) and in the muscles (about 75%)
- Liver glycogen glycogenolysis release of Glc into the blood
- Muscle glycogen use only in muscles (glucose-6-phosphatase is missing)

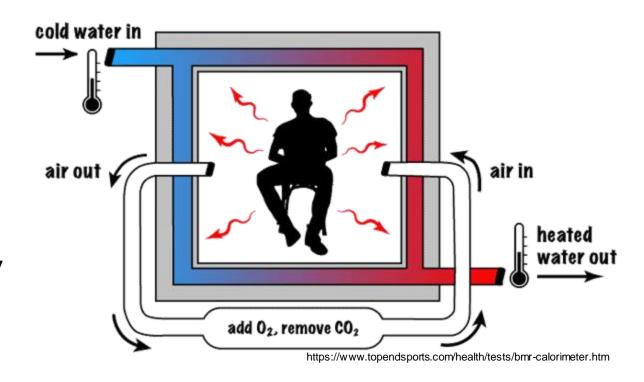
Energy transfers between organs

- Only in the form of substrates (glucose, FA, AA, lactate, ketons, ...)
- Any transfer of substrates consumes some energy (synthesis and splitting of stock substrates, transports, ...)
 Liver

Measurement of energy expenditure

Precise measurement – direct or indirect calorimetry

Calculation based on anthropometric parameters (diverse formulas)


Estimation based on the level of physical activity

Direct calorimentry

- Assumption: when ATP molecule is split, some heat is released
- Heat production ≈ energy expenditure

- Heat production is measured directly
- Technically demanding

Indirect calorimentry

- Assumption 1: the amount of ATP consumed is the same as the amount of ATP produced
- Assumption 2: each ATP is produced by consuming O₂ and producing CO₂
- O₂ consumption and/or CO₂ production is measured
- Open vs. closed system (Krogh respirometer practical exercises)
- Energy equivalent of O₂: the amount of energy released when consuming 1 liter of O₂

Sugars: 21.15 kJ/L

- Fats: 19.6 kJ/L

Proteins: 19.65 kJ/LMixed diet: 20.1 kJ/L

Respiratory quotient

The ratio of the volume of CO₂ produced and O₂ consumed

$$- RQ = V_{CO_2} / V_{O_2}$$

- It provides information about the composition of the substrates that the organism metabolizes
 - Sugars (glucose) RQ = 1
 - Fats RQ = 0.7
 - Mixed sources RQ ≈ 0.85
 - After intensive exercise, RQ > 1 (paying the oxygen debt)

Calculation of basal energy expenditure (BEE)

BEE from anthropometric parameters

- Harris-Benedict formulas: Men: BEE [kcal/day] = $66.5 + (13.75 \times m) + (5.003 \times h) - (6.755 \times a)$

Women: BEE [kcal/day] = $665,1 + (9,563 \times m) + (1,850 \times h) - (4,676 \times a)$

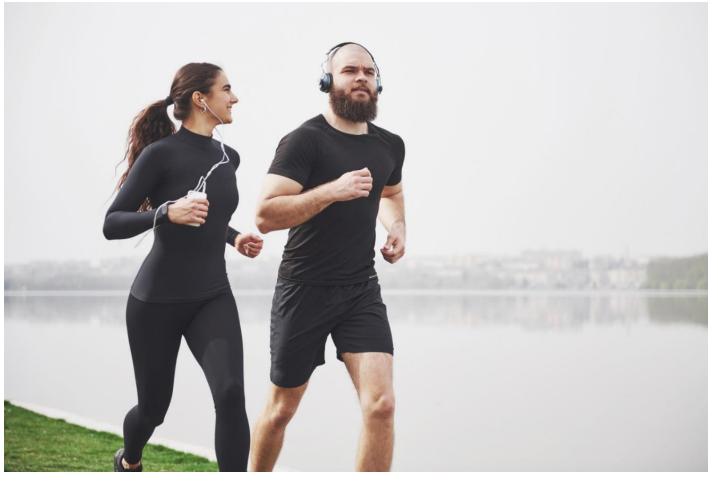
- Mifflina and St. Jeora formulas: Men: BEE [kcal/day] = $(10 \times m) + (6,25 \times h) - (5 \times a) + 5$

Women: BEE [kcal/day] = $(10 \times m) + (6.25 \times h) - (5 \times a) - 161$

m – body mass [kg]; h – high [cm]; a – age [years]

- Resting energy expenditure (REE) from body composition
 - Katch-McArdle formula:
 REE [kcal/day] = 370 + 21,6 × FFM, FFM fat-free mass




Physiology of Exercise

Physiology II lecture (aVLFY0422p)

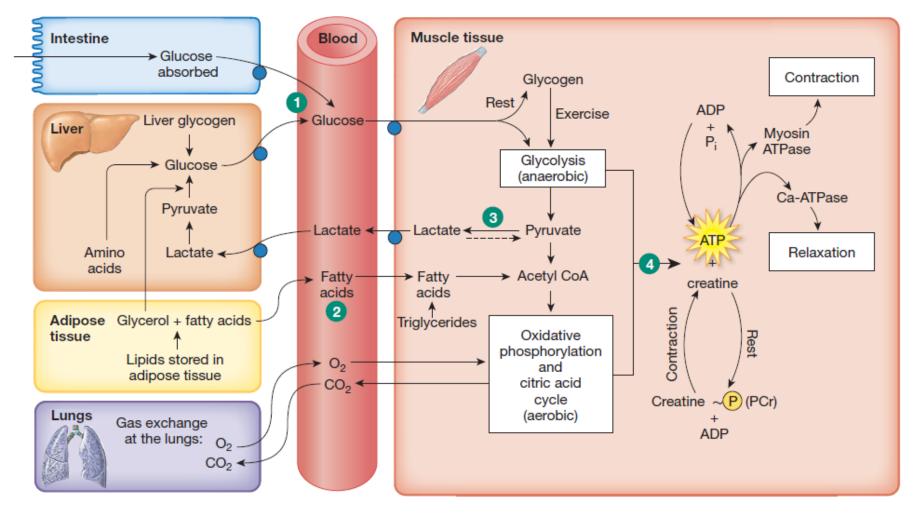
Tibor Stračina

Work (physical activity, exercise)

Source: www.freepik.com. Photos created by freepik and standret

Skeletal muscle

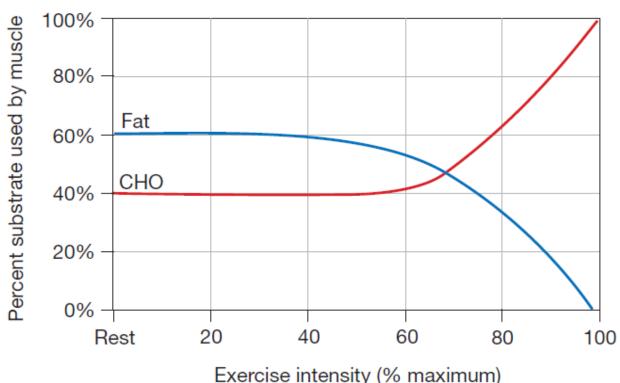
Contraction: isometric (static work) vs. isotonic (dynamic work)


- Blood flow depends on muscle tension
- Metabolic autoregulation: ↓pO2; ↑pCO2; ↓pH; ↑K+; ↑local temperature

Metabolism: aerobic vs. anaerobic

Muscle spindles – muscle tension – afferentation of exercise pressor reflex

Skeletal muscle metabolism

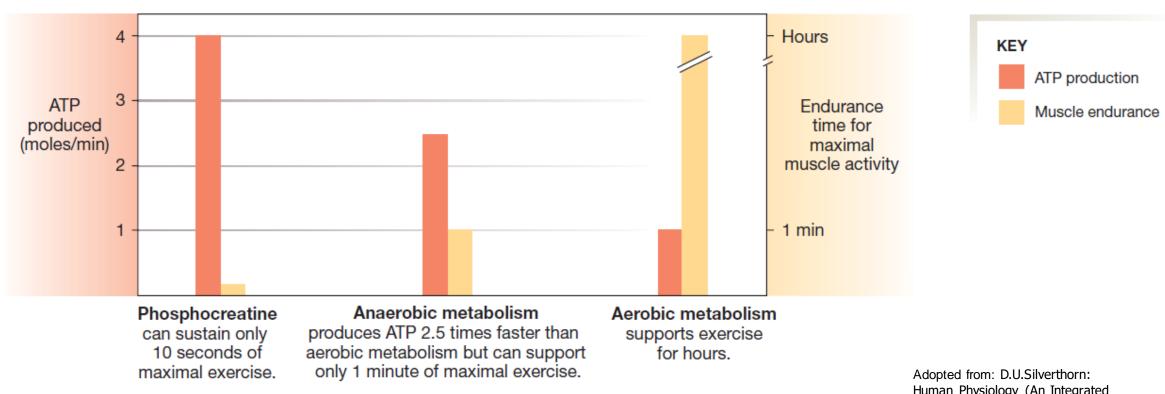


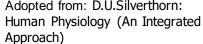
Energy substrate used by skeletal muscle

during exercise

Low-intensity e.: fats

– High-intensity e.: glucose




Data from G. A. Brooks and J. Mercier, *J App Physiol* 76: 2253–2261, 1994

Adopted from: D.U.Silverthorn: Human Physiology (An Integrated Approach)

Energy substrate use – aerobic vs. anaerobic

Reaction of the body to exercise

Sympathetic NS (ergotropic system)

- Cardiovascular changes
- Respiratory changes
- Metabolic changes

– HOMEOSTASIS

Anticipation of exercise

- Reaction of the body (cardiovascular system)
- Prepare the body for the increased metabolism of the exercising skeletal muscles

- Same as the early response to exercise
- Resembling fight-or-flight reaction

Cardiovascular response to exercise

- Increased cardiac output
- Increased venous return
- Vasoconstriction in inactive skeletal muscles, the GIT, skin, (kidneys)
- Vasodilation in active muscles (metabolic autoregulation)
- Epinephrine release (adrenal medulla)

Thermoregulation

Increase of cardiac output. Cardiac reserve

– CO = SV x HR (SNS: positive inotropic and chronotropic effect)

– Cardiac reserve = maximal CO / resting CO

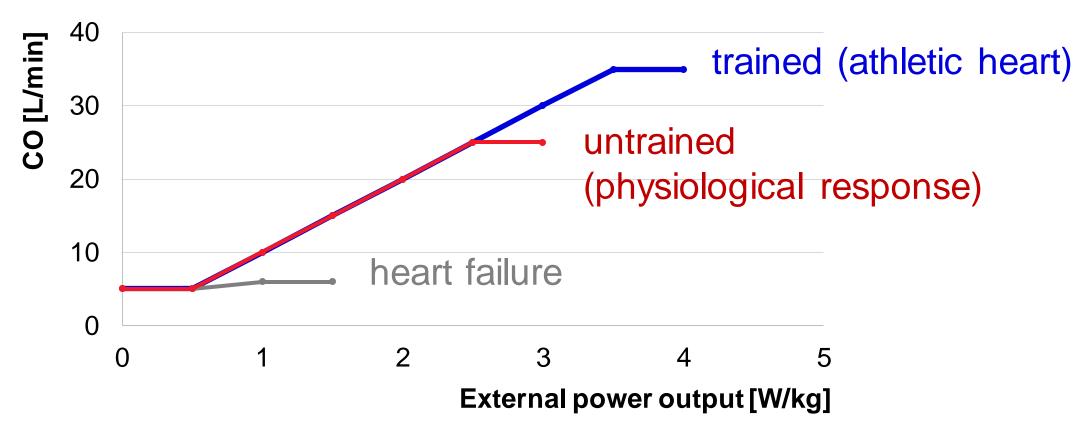
(4 - 7)

Coronary reserve = maximal CF / resting CF

 (~ 3.5)

– Chronotropic reserve = maximal HR / resting HR

(3-5)


Volume reserve = maximal SV / resting SV

 (~ 1.5)

CO – cardiac output; CF – coronary flow; HR – heart rate; SV – stroke volume

Cardiac reserve in healthy and failing heart

Changes of arterial blood pressure

PARAMETER	AT REST	DURING EXERCISE	INCREASE (x)
Cardiac output [L/min]	5 – 6	25 (35)	4 – 5 (7) cardiac reserve
Heart rate [1/min]	(45) 60-90	190 – 200 (220) age-dependent	3 – 5 chronotropic reserve
Stroke volume [mL]	75	115	~1.5 volume reserve
Systolic BP [mmHg]	120	static work ↑ dynamic work ↑↑	
Diastolic BP [mmHg]	70	static work ↑↑↑ dynamic work — /↓	
Mean arterial P (MAP) [mmHg]	~90	static work ↑ dynamic work — / ↑	
Muscle persufion [mL/min/100g]	2 – 4	60 – 120 (180) static vs. dynamic work	30 (10% COmax)

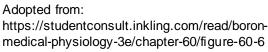
Respiratory response to exercise

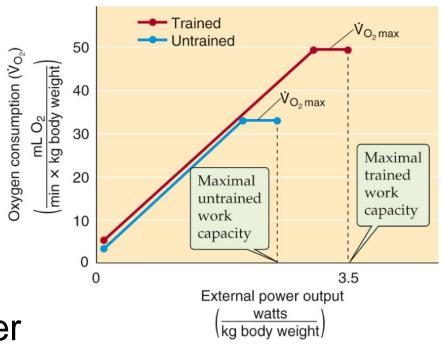
- Respiratory centre ↑ ventilation
 - chemoreceptors: ↑ pCO2 + ↓ pH
 - proprioceptors in lungs

Sympathetic stimulation (stress – anticipation)

Respiratory response to exercise

PARAMETER	AT REST	DURING EXERCISE	INCREASE (x)
Ventilation [L/min]	6 – 12	90 – 120	15 – 20 respiratory reserve
Breathing frequency [1/min]	12 – 16	40 – 60	4 – 5
Tidal volume (V _T) [mL]	0.5 – 0.75	~2	3 – 4
Pulmonary artery blood flow [mL/min]	5 – 6	25 – 35	4 – 6
O ₂ uptake (V _{O2}) [mL/min)]	250 – 300	~3000	10 – 12 (25)
CO ₂ production [mL/min]	~200	~8000	~40

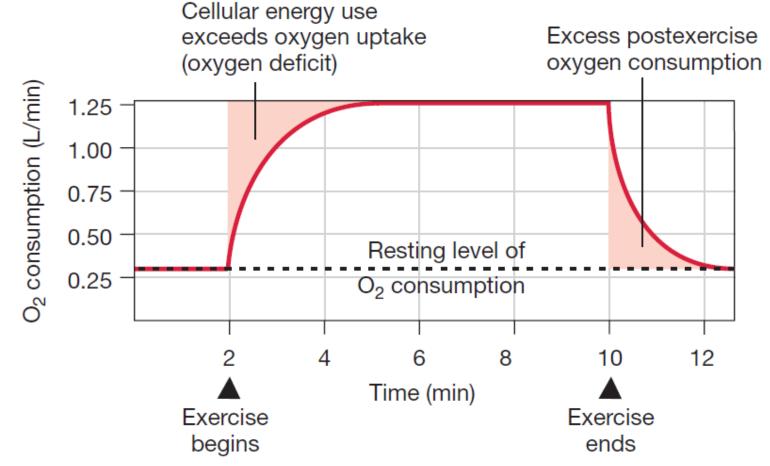

Oxygen uptake by lungs


Spiroergometry

- Resting V_{O2} : ~3.6 mL O_2 / (min x kg)

- untrained middle age person: 30 40 mL O₂ / (min x kg)
- elite endurance athletes: 80 90 mL O_2 / (min x kg)
- HF / COPD patients: 10 20 mL O_2 / (min x kg)

Determinants of V_{O₂ max}


- 1. Uptake of O₂ by the lungs
 - pulmonary ventilation
- 2. O₂ delivery to the muscles
 - blood flow (pressure gradient cardiac output x resistence)
 - haemoglobin concentration
- 3. Extraction of O₂ from blood by muscle
 - pO₂ gradient: blood-mitochondria

Oxygen consumption during exercise

Adopted from: D.U.Silverthorn: Human Physiology (An Integrated Approach)

– Oxygen debt

Testing of fitness

- (Spiro)ergometry
- Standardised workload
 - accurate: in W/kg
 - comparative (simple, inaccurate): in MET
 - metabolic equivalent (actual MR / resting MR)
 - 1 MET = uptake of 3.5 ml O_2 /kg.min ≈ 4.31 kJ/kg.h
 - sleeping ≈ 0.9 MET; slow walking ≈ 3-4 MET; fast running ≈ 16 MET

Indexes of fitness

- $-W_{170}[W/kg]$
- $-V_{O_2 \text{ max}}[\text{mL } O_2 / (\text{min x kg})]$
- Aerobic / anaerobic threshold

- Fatigue
- Training
- Adaptation to exercise

The presentation is copyrighted work created by employees of Masaryk University. Any unauthorised reproduction or distribution of the presentation or individual slides is against the law.

