Fractures

Z. Rozkydal I.Orthopaedic department Medical faculty, Masaryk university Brno

Fractures - etiology

- Traumatic (acute violence)
- Pathological (pathological lesion)
- Stress fractures

Traumatic fracture

Pathological fracture

Tumors Infections Osteopaties Congenital diseases

Stress fracture

THE COMMON FRACTURES OF OSTEOPOROSIS

Osteoporosis of vetebrae

Mechanism of injury

traction angulation rotation vertical compression torsion

Missile fractures

Mechanism of injury

High energy trauma – large lesion of soft tissue

Low energy trauma - small lesion of soft tissue

Classification of fractures

Complete

- Incomplete:
- fissures
- infractions
- impressions
- subperiostal

Localisation of fractures

- Epiphyseal
- Metaphyseal
- Diaphyseal

epiphysis metaphysis

diaphysis

metaphysis

epiphysis

Fracture lines

interfragment transverse oblique spiral comminution

Dislocation

- Dislocatio ad axim
- Dislocatio ad latus
- Dislocatio ad longitudinem cum contractione
- Impactio
- Dislocatio ad longitudinem cum distractione Dislocatio ad peripheriam

Clinical symptoms of fractures

- Pain and tenderness
- Swelling, haematoma
- Impaired function
- Deformity
- Crepitation
- Pathological movements

Healing of fractures

Osteoblasts: Cambian layer of periosteum and endosteum Tratebulae in metaphyseal and epiphyseal region

Osteoprogenitor cells: reticular, perivascular cells, monocyts

Diaphysis – longer period of healing Epi and metaphysis – shorter period of healing

Secondary healing

- 1. Haematoma
- 2. Granulation tissue
- 3. Osteoid (since 5. day)
- 4. Primary callus formation
 - primary woven bone
 - fibrous tissue,
 - cartilage tissue
 - mineral layers after 6 days

Secondary healing

5. Secondary callus formation

woven bone is replaced by
cortical and trabecular bone

6. Remodelation of callus

Primary healing

Prerequisity: stable fixation It is intercortical healing without callus formation

1. Contact

2. Gap

Osteon: osteoclasts, vessels, osteoblasts

Primary healing

Functional unit: Osteon

Speed of osteons: 0,1 mm/day

 Makropreparát osteotomie radia psa fixovan kompresní dlahou (stav po 6 týdnech). Je vytvo řen minimální periostální a endostální svalek

AO classification

Davos, 1958.

E. Műller M. Allgőver H. Willenegger

AO classification - diaphysis

Туре

AO classificationmetaphysis, epiphysis

AO classifications

AO classification – proximal humerus

Extra-articular unifocal fx, tuberosity

A2 Extra-articular unifocal fx, metaphyseal impacted

Extra-articular unifocal fx, metaphyseal non-impacted

B1 Extra-articular bifocal fx, with metaphyseal impaction

Extra-articular

bifocal fx,

B2

without metaphyseal impaction

B3 Extra-articular bifocal fx, with glenohumeral dislocation

Articular fx, with slight displacement

C2 Articular fx, impacted with marked displacement

Management of fractures

Conservative:

- 1. Reduction
- 2. Retention (immobilisation)
- 3. Physiotherapy

Conservative management

Operative treatment

In all cases, in which we get advantage against conservative treatment

- Intraarticular fractures
- Dislocated fr. not redusable by closed reduction
- Fr. of proximal femur
- Diaphyseal fr.
- Open fr.

Osteosynthesis

• Aim – anatomical reduction

• Absolute stability (AO plate)

• Relative stability

+ secondary healing with periosteal and endosteal callus (intramedullary nails)

Osteosynthesis

Kirschner wires

AO screws cortical cancellous

Tension band wiring

Tension band wiring of patella

Compression AO plate

Self- compression AO plates

Osteosynthesis of radius and ulna

AO plate of proximal femur

DHS Dynamic hip screw

DCS Dynamic condylar screw

Gamma locking nail

Gamma locking nail

Nail PFNA

Rotation and angle stability

Static and dynamic locking mechanism

PFNA Synthes

LISS – less invasive stabilisation system

Unicortical plates

Locking compression plate - LCP

- Unicortical fixation in diaphysis Bicortical fixation – in epiphysis
- Compression screws oblique direction Limited contact
- Adjusted to every anatomical region
- Titanium

Locking compression plate - LCP

In epiphysis bicortical fixation In diaphysis unicortical fixation

LCP - Philos Anatomical shape

Locking intramedullary nails

Reamed

Unreamed

Locking intramedullar nails

Reamed:

Stronger

Flexible reamers

Hollow

Good stability

Risk of fat embolism In type fx. A,B

Locking intramedullar nails

Unreamed:

Solid

Proximal and distal locking

Less stability

For fx. type C

Intramedullar nail of femur

Rotation stability

Static - circle holes Dynamic - oval holes with compression of fragments

Middle 3/5 of diaphysis

PFN - proximal femoral nail Reconstructive nails

Kűntscher intramedullar nail

Intramedullar nailing of the femur

Locked nail in humerus

Locked nail in tibia

Tibial nail - Synthes

Steel Titan

Anatomic curvature

External fixator - frame

External fixator

External fixator

External fixator - Ilizarev

External fixator of the wrist

Fractures in children

• Fast healing

• Many fx. healed by conservative methods

• Few complications

Remodelation

Remodelation (dislocation ad latus, ad axim, in antecurvation or recurvation) can heal properly. Depends on age and site to growth plate. Dislocations ad peripheriam should be reduced.

Fractures in children

- growth plate lengthening of long bones
- damage of growth plate disturbance of growth

Fractures in children

- Strong periosteum, elasticity of bone (green stick fractures)
- Subperiosteal haematoma.
 Ossifications of haematoma
- Ligaments are elastic
 - epiphyseolysis is common
 - fracture is less common

- Epiphyseal injuries Salter- Harris - in 15 % of cases
- 1. Epifyseolysis
- 2. Fx. of epiphysis- Holland triangle

- 3. Fx. of epiphysis
- 4. Fx. epiphyseometaphyseal
- 5. Contusion of epiphysis

Green stick fractures

Bone is broken in a periosteal sleeve

Periosteum is not disrupted

Physiotherapy

• Physiotherapy in chidren is easier than in adults

Componed (open) fractures

Damage of skin Damage of soft tissues Bacterial contamination

Classification of Gustilo and Anderson

1 stage – puncture of skin from bone fragment low energy trauma

2 stage – open fracture without defect of skin and soft tissue

3 stage – wound with defect of skin and soft tissue, high energy trauma

Tscherne clasification

Closed fr.

- G0 no damage to soft tissues
- GI superficial excoriations
- GII deep excoriations
- GIII contusion of the skin, decollement, damage of muscles

Open fr.

- OI puncture wound from bone fragment, small wound
- OII wound without loss of skin
- OIII large wound with loss of skin
- OIV subtotal amputation

Management

- Surgery as soon as possible
- 1. Cleaning of skin
- 2. Debridement of wound (removal of foreign bodies, excision od dead parts, lavage
- 3. Open reduction, stabilisation with external fixator, suction drainage, suture of skin without tension

Management

Conversion to the intramedullary nail

Management

- Musculocutaneous flap
- Antibiotics
- Tetanus prevention
- Antigangrenous serum
- Prevention of phlebotrombosis

Disturbance of fracture healing

- Malunion- fractura male sanata
- Hypertrophic callus
- Delayed union
- Avascular necrosis of epiphysis
- Nonunion: aseptic, septic vital, nonvital
- Refracture

Consequences of fractures

Growth arrest Shortening of bone Paraarticular ossifications Osteoarthrosis Limites movements in joint

Malunion

Vital nonunion

Avascular nonunions

Pseudoarthrosis of the femur

Pseudoarthrosis of the tibia

Complications of fractures - local

- Soft tissue damage: vessels, peripheral nerves, muscles, surrounding tissues
- Infection
- Compartment syndrom
- Algoneurodystrophy

Compartment syndrom- CS

Physiogical pressure in tissue: 0 - 6 mm Hg Patholocal pressure in CS -tissue : 30- 40 mm Hg

Compartment syndrom

Hematoma Swelling Tight bandage ,tight plaster of Paris Severe contusion Tight suture of fascia

Compartment syndrom

Pain Pallor Paresthesia Paralysis pulselessness

Normal preasure 3-10 mm Hg Above 30 mm slow doen od circulatio Piesoelectric sensor Indication for fasciotomy mpre than 30-45 mm Hg

Symptoms

- Pain intensive and growing
- Swelling- increasing
- Cold periphery, cyanosis
- Parestesia, hyperestesi, numbness of toes
- Diminished motor function (from ischemia)
- Diminished puls in periphery

Management of CS

Urgent fasciotomy

Obr. 9

Compartment syndrom - consequences

- After 6 hours irreversible damage to muscles
- Change to fibrous filaments
- contracture of muscles
- After 12 hours
- Irreversible damage to nerves

Algoneurodystrophy

Reaction of sympathetic nerves to the injury

Algoneurodystrophy

- 1. Stage hyperemia, 0- 3 months pain, swelling, hyperestesia
- 2. Stage dystrophy
 plastic oedema, cold periphery, thin skin, limited movements, X-ray - osteoporosis
- Stage atrophic atrofic skin, muscles, limited movements

Algoneurodystrophy -management

Short immobilisation Drugs against swelling Analgetics, sedative drugs physiotherapy **Sympaticolytics Regional blocks** Corticoids Calcitonin, alendronate Physioterapy after removal of bandage

Complication of fractures - general

Hypovolemic shock Cardiopulmonar arrest Fat embolism Haemoragic complications Disseminated intravascular coagulopathy Trombembolism

Complication of fractures - general

- Fracture disease:
- bronchopneumonia
- Phlebotrombosis, pulmonary embolism
- Preassure sores
- Urinary tract infection
- Weakness
- Muscle atrophy and contractures

Garden classification

Head prosthesis

- Over 80 years
- Minimal blood loss
- Immidiate weightbearing
- Disadvantage: Erosion of the cartilage of the acetabulum

