Aim of the practicals

- Basic of radiobiology
- Model of acute radiation syndrome blood form
- Evaluation of the data obtained during practice on a model of acute radiation syndrome

Ionizing radiation

- The radiation emitted by radioactive nuclides
- Electromagnetic or corpuscular radiation,
 which causes the penetration of mass
 ionization (must have sufficiently high
 energy).
- Energy is in the range of keV-MeV

Types of ionizing radiation

Corpuscular α, β, neutrons electromagnetic γ

The energy spectrum of radiation

Ionization vs. excitation

- •Ionization = process of creating charged atoms
- •Excitation = atoms absorp energy without ionizazion. Orbital electrons are raised to next level.
- Both types of interactions are very fast
- Formed in a ratio of 1:2

MUNI Med

Units

- MeV, a unit of energy
- Roentgen, a unit of exposure [C / kg dry air]
- Becquerel, activity [s-1] \approx Curie
- Gray, dose [J / kg] \approx rad
- Sievert, dose equivalent [] / kg] \approx rem

Units

- Dose equivalent
- = dose * constant WR
- $-\gamma$, β , X = 1
- neutrons = 10
- -a = 20

	Radiation	Energy	W _R (formerly Q)
2	x-rays, gamma rays,		4
	beta particles, muons		1
	neutrons	< 1 MeV	2.5 + 18.2 · e ^{-[ln(E)]²/6}
		1 MeV - 50 MeV	$5.0 + 17.0 \cdot e^{-[ln(2 \cdot E)]^2/6}$
		> 50 MeV	$2.5 + 3.25 \cdot e^{-[ln(0.04 \cdot E)]^{2/6}}$
	protons, charged pions		2
	alpha particles, Nuclear fission products, heavy nuclei		20

Sources of ionizing radiation?

Natural space exposure increases with altitude solar terrestrial sources natural radioactive decay of radioisotopes (soil and rock) Radon

gas, there is a decay of radium-226 (Uranium)

Artificial medicine diagnosis, therapy, sterilization industrial nuclear energy

Biological effects of ionizing radiation

- Direct ionizing = direct
 destruction of
 biomacromolecules
- Indirectly (nondirect)
 effects = production of
 free radicals (radiolysis
 of water)

Chemical effect of ionizing radiation

Oxygen effect!!

DNA damage

Very serious state DNA damage is reflected in the synthesis of damaged proteins DNA repair mechanisms Reproductive ability of cells

Eukaryotic Chromosomes

Eukaryotic chromosomes:

-linear chromsomes;

-every species has a different number of chromosomes;

-composed of chromatin – a complex of DNA and proteins
 -heterochromatin – not expressed
 -euchromatin – expressed regions

Cell and Chromatin Non dividing In cell division cell Hetero chromatin Euchromatin ESTING (NONDIVIDING) CELL **CHROMOSOME** QUIESCENCE APPEARANCE INTERPHASE CONDENSATION DECONDENSATION NUCLEUS PREPARING TO DIVIDE CHROMOSOME DUPLICATION DNA REPLICATION S PHASE OF CELL CYCLE NUCLEUS DURING DIVISION unduplicated duplicated chromosome chromosome

Mechanisms of DNA damage

MUNI Med

damage response enables life on earth as we know it

MUNI Med

Repair mechanisms

Direct repair Excision repair Mismatch repair SSB repair (DSB repair)

Effects of ionizing radiation on the human body

Deterministic effects

– Stochastic effects

Deterministic effects

- There are those that will take effect after total body irradiation, or a tissue once
- The dependence of the probability of occurrence of damage to an equivalent dose have the sigmoid character

Deterministic effects

- Acute radiation sickness (radiation syndrome)
- Local acute skin damage
- Damage to fetus
- Infertility
- Lenticular opacities

Stochastic effects

- They result from damage to a small number of cells
- They can occur after a single exposure of sub-threshold dose or chronic radiation tissue or whole body

Character of biological effects

Deterministic

- severity dependent
 ("determined") on the dose
 manifestation is specific

effect only when exposure
 exceeded threshold

- damage of large amount of cells

 onset rather close to the exposure (**short latency**)

- types:

acute radiation syndrome chronic post-radiation syndrome cataract, radiation dermatitis, damage of the foetus in utero sterility

Stochastic

probability increases with

- the dose (not the severity!)
 manifestation non-specific
 gradual increase of the risk
 without "safe" threshold
- damage of the **single cell** enough to cause effect
- manifestation delayed
- (typically years)
- types:

somatic mutation - cancer leukemias, thyroid, lung, breast, bones

germinative mutation (oocyte, sperm cell)

Acute radiation syndrome

affecting the hematopoietic, gastrointestinal system and cerebrovascular timing, extent and severity gradec according to the dose deterministic effect!! from several hours to several months after exposure

Acute radiation syndrome

- Haematopoetic syndrome (> 1GY)
- GI syndrome (> 10Gy)
 - early (hours) nausea, vomiting, diarrhea
 - late (days) loss of intestinal integrity malabsorption, dehydration, toxemia / sepsis, ileus, bleeding
- Cerebrovascular syndrome (tens of Gy)
 - headache, cognitive impairment, disorientation, ataxia, convulsions, fatigue and hypotension
- Cutaneous
 - erythema, burns, edema, impaired wound healing

Hematopoetic syndrome

bone marrow irradiation (> 1GY) leads to an exponential cell death - haematological crisis marrow hypoplasia to aplasia + peripheral pancytopenia (infection, bleeding) subpopulation of stem bb is selectively more radioresistant, (probably due to predominance bb. stage in Go) necessary for regeneration anemia is the result of late (erythrocytes ~ 120 days)! massive stress response (glucocorticoids) contribute to lymphopenia (cytolytic effect) and paradoxically delay the onset of granulocytopenia (release stocks. granulocytes from the spleen)

Therapeutic effects of ionizing radiation

- Teleterapy (⁶⁰Co)
- Contact therapy (³²P, ⁹⁰Sr)
- Brachytherapy (⁶⁰Co, ¹³⁷Cs)
- Endotherapy (Na¹³¹I)
- Radioimunotherapy

Hemopoesis

Erythropoiesis

http://www.noblesmedart.com/morph.mov

Erythropoiesis

- Erythropoiesis is the development of mature red blood cells (erythrocytes).
- Like all blood cells, erythroid cells begin as pluripotential stem cells.
 The first cell that is recognizable as specifically leading down the red cell
- The first cell that is recognizable as specifically leading down the red cell pathway is the proerythroblast
- As development progresses, the nucleus becomes somewhat smaller and the cytoplasm becomes more basophilic, due to the presence of ribosomes. In this stage the cell is called a **basophilic erythroblast**.
- The cell will continue to become smaller throughout development. As the cell begins to produce hemoglobin, the cytoplasm attracts both basic and eosin stains, and is called a polychromatophilic erythroblast.
- The cytoplasm eventually becomes more eosinophilic, and the cell is called an orthochromatic erythroblast
- This orthochromatic erythroblast will then extrude its nucleus and enter the circulation as a b. Reticulocytes are so named because these cells contain reticular networks of polyribosomes. As reticulocytes loose their polyribosomes they become **mature red blood cells**.

MED

Reticulocyte

MUNI Med

Reticulocytes

- Reticulocytes are immature red blood cells, typically composing about 1% of the red cells in the human body.
- Reticulocytes develop and mature in the red bone marrow and then circulate for about a day in the blood stream before developing into mature red blood cells.
- Like mature red blood cells, reticulocytes do not have a cell nucleus.
- They are called reticulocytes because of a reticular (mesh-like) network of ribosomal RNA that becomes visible under a microscope with certain stains such as new methylene blue.

Classification of reticulocyte counts

- Counting with imersion, magnification 100
- Out of 1000 RBC in the moving viewing field, the number of RET will be counted
- Normal counts RAT: app. 20 % RET
- Normal counts MAN: app 0.5-1.5% (5-15%) RET

 \uparrow number: increasing bloodforming (regeneration) \downarrow number: inhibition of erythropoiesis

Differential leucocyte counts

- Changes in WBC number (%)
 - Indication of infection, poisoning, leukemia, chemotherapy, alergic reaction
- Normal WBC counts in man:
 - neutrophils 60-70% (incr. in bacterial infection)
 - lymphocytes 20-25% (incr. in viral infection)
 - monocytes 3-8 % (incr. in fungal/viral infection)
 - eozinophils 2-4 % (incr. in alergic reaction and parasital infect.)
 - bazophils <1% (incr. in alergic reaction)

MUNI Med

Normal counts of WBC in rat

– Number of WBC.....cca 12.5 tis.mm-3

- neutrophil granulocytes 18 36%
- eozinophil granulocytes 1 4%
- bazophil granulocytes 0 1%
- lymphocytes 62 75%
- monocytes 1 6%

Blood smear

Praktikum I - design

Praktikum I – operační postup

Praktikum I - hodnocení

• The stained smear will first be viewed at a low magnification and an area where white cells are not overlaid by red cells will be selected.

 Using an immersion objective, a total of 100 WBC will be registered and identified as to their individual type.

• The viewing field will be moved in order to count the prescribed number of leucocytes.

