II U II I
 MED

Cardiac Action Potential and Electrocardiography

Preclinical practice 17. 4. 2024
Mgr. Martin Král

Action potential

2 Department of Physiology, Faculty of Medicine, Masaryk University

Action potential

Ion channel

Outside

III U II I
MED

Flow of ions

- electrochemical gradient
- Nernst eqation $\quad E_{X}=\frac{61}{z} \cdot \log \frac{[\mathrm{X}]_{e}}{[\mathrm{X}]_{i}}$
- electrochemical equilibrium potential for:
- $\mathrm{Na}^{+}=+60 \mathrm{mV}$
$-\mathrm{K}^{+}=-96 \mathrm{mV}$
- $\mathrm{Ca}^{2+}=+134$

Nodal cell SA

- 100 AP per minute

II U II I

Atrial cell

Ventricular cell

Time

Ventricular cell

EAD

DAD

Comparison of atrial and ventricular AP

10 Department of Physiology, Faculty of Medicine, Masaryk University

ECG

11 Department of Physiology, Faculty of Medicine, Masaryk University
II U II I

ECG

- Definition: recording of the cardiac electrical activity from the surface of the body

Spreading of the signal

- Cell to cell by gapjuctions
- By conduction system
- Sinoatrial node (SA) - natural frequency 100 bpm (mostly under parasympathetic damping effect), conduction velocity $0.05 \mathrm{~m} / \mathrm{s}$
- Internodal tracts - conduction velocity $1 \mathrm{~m} / \mathrm{s}$
- Atrioventricular node - natural frequency 40 55 bpm , conduction velocity only $0.05 \mathrm{~m} / \mathrm{s}$ (nodal delay)
- His bundle - conduction velocity $1-1.5 \mathrm{~m} / \mathrm{s}$
- Tawara (bundle) branches - conduction velocity $1-1.5 \mathrm{~m} / \mathrm{s}$

- Purkinje fibers - conduction velocity $3.5 \mathrm{~m} / \mathrm{s}$

ECG

- 1. Frequency (arrhythmias)
- 2. Conduction (blocks - SA, AV)
- 3. Rhythm
- 4. Ventricular gradient (relationship between depolarization and repolarization)

Electric dipole

- Electrode: records electrical potential (Ф)
- Electrical lead: a connection between two electrodes
- It records the voltage between the electrodes
- Voltage: difference of el. potentials ($\mathrm{V}=\Phi 1$ - Ф2)

II U II I MED

Einthoven's triangle

(standard, limb, bipolar leads)

- Bipolar leads: both electrodes are active (variable electrical potential)
- Electrode colors: R: red, L: yellow, F: green

Goldberger leads

(augmented, limb unipolar leads)

- Unipolar leads: one electrode is active (variable electric potential) and the other is inactive (constant electric potential, usually 0 mV)
- The active electrode is always positive

II U II I
MED

Wilson's central terminal (W)

- It is formed by the connection of limb electrodes through resistors
- Electrically represents the center of the heart (it is led out or it is calculated)
- Inactive electrode (constant potential)

Chest leads

- A chest lead: a connection between a chest electrode and the central terminal
- Unipolar leads: the chest electrode is active (positive) and the central terminal is inactive (potential $=0 \mathrm{mV}$)

II U II I MED

Leads according to Cabrera

II U II I
20 Department of Physiology, Faculty of Medicine, Masaryk University

Analysis of ECG

1. Heart action
2. Heart rhythm
3. Heart rate
4. Waves, segments and intervals

- P wave
- PQ interval
- QRS complex
- ST segment
- T wave
- QT interval

5. Electrical heart axis

Analysis of ECG

- A millimeter grid of paper will help in fast analysis
- See the paper speed (here $25 \mathrm{~mm} / \mathrm{s}$)
- $1 \mathrm{~mm}=0,04 \mathrm{~s}$
- 5 mm (big square) $=0,2 \mathrm{~s}$

1) Heart action

- Regularity of distances between QRS complexes - RR intervals
- Regular action: difference < 0,16 s
- Irregular action: difference $>0,16 \mathrm{~s}$
- Usually pathological

- Beware of significant sinus respiratory arrhythmia - it is very physiological. If you are unsure, ask the patient to hold their breath during the recording
- Note: if one extrasystole is present, but otherwise the action is regular, it is called regular

2) Heart rhythm

- Heart rhythm is determined by the source of action potentials that lead to ventricular depolarization
ventricul depolarization is crucial because it determines cardiac output
- Sinus rhythm
- AP begins in the SA node
- ECG: P wave (atrial depolarization) precedes QRS complex
- Junction rhythm
- AP begins in the AV node or His bundle, and the frequency is usually 40-60 bpm
- P wave does not precede QRS complex, QRS shape is normal (narrow)
- Heart rate is low (40-60 bpm)
- Atrial depolarization can be present in the ECG if the ventricular impulses are transferred to the atria - wave is after QRS and has opposite polarity because it runs in the opposite direction
- Tertial (ventricular) rhythm
- AP begins in other parts of the conduction system, with a frequency of 30-40 bpm
- QRS has a strange shape (wider) because it spreads in a non-standard direction in the ventricles

2) Heart rhythm

Sinus rhythm - P wave precedes each QRS complex - the impulse begins in the SA node, it is followed by the depolarization of the ventricles

Junctional rhythm - normal P waves do not precede QRS - the impulse begins in the AV node or His bundle, low heart rate, but normal QRS shape (the impulse spreads normally in the ventricle)

Tertiary (ventriclular) rhythm - there are no P waves bound to QRS , the impulse begins somewhere in the ventricles - a deformed shape of QRS, very low heart rate, for example, 3rd-degree AV block

3rd-degree AV block - tertiary rhythm in ventricles, faster rhythm in atria determined by the SA node, but the stimulus is not transferred to the ventricles

3) Heart rate (HR)

- A frequency of ventricular contractions (it determines cardiac output); on ECG - a frequency of ventricular depolarizations
$-H R=1 / R R$ bpm (beats per minute)
- Physiological values: 60-90 bpm at rest
- Tachycardia: > 90 bpm at rest
- Bradycardia: < 60 bpm

4) Waves, segments, intervals

Name	Norm
P wave	80 ms
interval PQ (PR)	$120-200 \mathrm{~ms}$
segment PQ (PR)	$50-120 \mathrm{~ms}$
Q	-
complex QRS	$80-100 \mathrm{~ms}$
R	-
S	-
segment ST	$80-120 \mathrm{~ms}$
interval QT	$<420 \mathrm{~ms}$
wave T	160 ms

Bazett's formula: $Q T c=\frac{Q T}{\sqrt{R R}}$ QT depends on RR interval correction of QT to RR

4) Waves

Atria depolarization

Lead II

Ventricular depolarization QRS
 repolarization

P wave:

- Is it present?
- Is it positive/negative, one-peak/two-peak, high (>0,25 mV)/normal/low?

QRS:

Q: first negative deflection
R: first positive deflection
S : negative deflection after positive deflection

- Small deflection (less than 0,5 mV) - small letter
- Strong deflection (5 mm and more) - capital letter
- Second positive deflection (')

T wave:

- Is positive/negative/bipolar?
- Does it have the same polarity as the strongest QRS deflection?
- Yes: concordant (ok), No: discordant (pathology)
- Bipolar T:
- Preterminal negative (-/+)
- Terminal negative (+/-)

5) Electrical heart axis

Electrical heart axis: average direction of the electric heart vector during ventricular depolarization (QRS complex)

Physiological range:
Middle type $0^{\circ}-90^{\circ}$
Left type $-30^{\circ}-0^{\circ}$
Right type $90^{\circ}-120^{\circ}$

Pathological range:

Right deviation: > 120° (right ventricular hypertrophy, dextrocardia)
Left deviation: <-30 (left ventricular hypertrophy, pregnancy, obesity)

5) Electrical heart axis

90°

Electrical heart axis: average direction of the electric heart vector during ventricular depolarization (QRS complex)

Physiological range:

Middle type $0^{\circ}-90^{\circ}$
Left type $-30^{\circ}-0^{\circ}$
Right type $90^{\circ}-120^{\circ}$
Pathological range:
Right deviation: > 120° (right ventricular hypertrophy, dextrocardia) Left deviation: <-30 (left ventricular hypertrophy, pregnancy, obesity)

Electrical heart axis - calculation

- Because the el. axis is related to ventricular depolarization in the frontal plane, for calculation, we use QRS in limb leads: I, II, III.
- Calculate the sum of QRS oscillations in leads I, II, III.
When the oscillation goes downward, it is negative. When the oscillation is upward, it is positive. Use a millimeter grid.
- Lead I: $Q_{1}=-1 ; R_{1}=6 ; S_{1}=0$; $Q R S_{1}=5$
- Lead II: $Q_{\| \mid}=-1 ; R_{\| I}=17 ; S_{\| \mid}=-1$; $Q_{R} S_{| |}=15$
- Lead IIII: $Q_{I I I}=0 ; R_{I I I}=10 ; S_{I I I}=-1$; QRS $_{\text {III }}=9$

Electrical heart axis - calculation

II U II I MED

Estimation of electrical heart axis

- Leads II and aVR

II U II I MED

Estimation of electrical heart axis

II U II I MED

Estimation of electrical heart axis

Is deviation of QRS complex positive in I and aVF lead?

Electric axis calculation by software

Intervals [ms]	
RR	1031
P	81
$P Q$	173
QRS	93
QT	401
QTc	395

Interpretation must be authorized by physician
Automatic marker setting
Patient's age unknown
Bradycardia
Electrical axis for atrial depolarization

Estimation of electrical heart axis in Horizontal plane

II U II I
 MED

Thank you for your attention!

