
Evaluation of the nutrition state

Adipose tissue

- White (for storing dietary energy as TAGs)
- Brown (for ability to convert chemical energy into heat)

Beige = harbored

Fat tissue functions

- Thermogenesis
- Lactation
- Immune responses
- Fuel for metabolism

Structure of adipose tissue

- Adipocytes
- Non-fat cells:
 - inflammatory cells (macrophages)
 - immune cells
 - preadipocytes
 - fibroblasts
- Connective tissue matrix
- Vascular tissue
- Neural tissue

Abdominal fat

The abdominal fat is present in two main depots:

- Subcutaneous (80% of all body fat)
- Intra-abdominal (10–20% of total fat in men and 5–8% in women)

Adipocytes

- New smaller adipocytes act as a buffers. They are more insulinsensitive and have high avidity for FFAs and TGs uptake, preventing their deposition in non-adipose tissue (SCAT)
- Large adipocytes are insulinresistant, hyperlipolytic and resistant to anti-lipolytic effect of insulin (VAT)

Clinical and prognostic differences

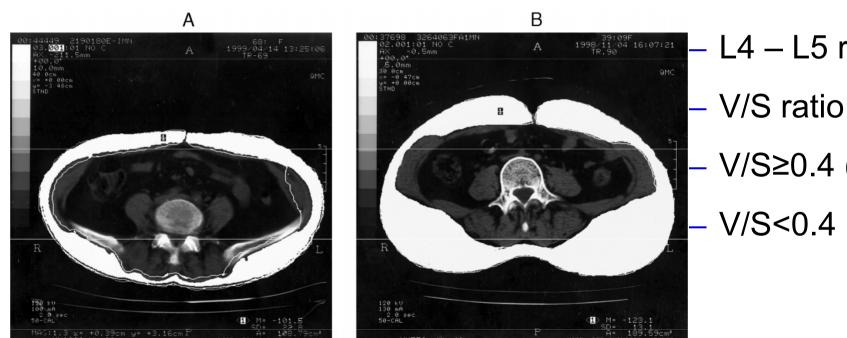
- Metabolic risks
- Metabolic syndrome
- Vascular risk and cardiovascular events
- Prediction of mortality

Anthropometric indexes of abdominal adipose tissue mass

- WHR
- Waist circumference
- Abdominal sagittal diameter*

Waist circumference (cm)			
Category	Men	Women	
Normal value	≤ 94	≤ 80	
Necessity to decrease body mass	95–102	81–90	
Medical assistance with decreasing of body mass necessary	> 102	> 90	

WHR: for women < 0.80 for men < 1.00


Imaging techniques

- Computed tomography (CT)
- Magnetic resonance imaging (MRI)
- Ultrasound (US)*

Imaging techniques

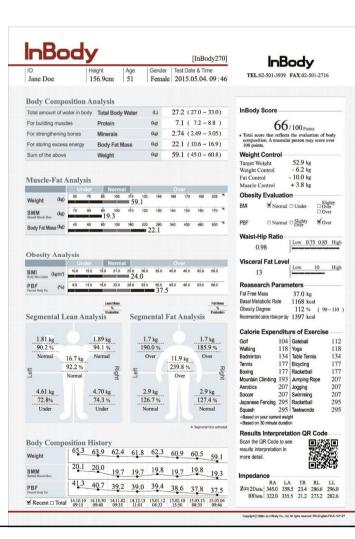
Computed tomography (CT)

L4 – L5 region

V/S≥0.4 (V group)

V/S<0.4 (SC group)

Computed tomography showing cross-sectional abdominal areas at umbilicus level in two patients demonstrating variation in fat distribution. A, Visceral type (49-yr-old female, 23.1 of BMI, visceral fat area: 146 cm²; subcutaneous fat area, 115 cm²; V/S ratio, 1.27). B, Subcutaneous type (40-yr-old female, 24.0 of BMI, visceral fat area: 60 cm²; subcutaneous fat area, 190 cm²; V/S ratio, 0.31).



Bioimpedance measuring

- Bioimpedance spectroscopy (BIS)
- Bioelectrical impedance analysis (BIA)

Indexes calculated from anthropometric parameters

Broca's index (ideal body mass):

- \bigcirc : height in cm - 100 or (height in m)² × 23 - \bigcirc : (height in cm - 100) - 10 % or (height in m)² × 21

Obesity degree	% ideal body mass
mild	115–129
moderate	130–149
severe	150–199
morbid	> 200

– Quetelet's index or body mass index (BMI):

$$-BMI = \frac{body \ weight \ (kg)}{height \ (m)^2}$$

BMI (kg.m ⁻²)			
Category	Men	Women	
Underweight	< 20	< 19	
Healthy	20–24,9	19–23,9	
Overweight	25–29,9	24–28,9	
Obesity	30–39,9	29–38,9	
Morbid obesity	> 40	> 39	

