Hematopoietic Cell Transplantation

basal findings

Miroslav Tomíška Internal Medicine, Block 4 5th year students

Terminology

of hematopoietic cell transplantation

- Originally Bone Marrow Transplantation, BMT
 - the source of hematopoietic cells was bone marrow
 - BMT has remained the title of scientific journal
- Hematopoietic cell transplantation, HCT
 - reflects the availability of peripheral blood stem cells
 - HCT covers other sources of stem cells
 - hematopoietic stem cell transplantation, HSCT
- Autologous stem cell transplantation
 - autologous peripheral blood stem cell transplantation, auto-PBSCT

History of HCT

- Research to treat radiation sickness in 1950s
 - potential of total body irradiation to treat leukemia
- Discovery of HLA-system 1960s
- Discovery of cyclosporin A 1970s
- First publication of 100 transplanted patients
 from Seattle 1977 (Edward Donnall Thomas)
- Allogeneic HCT routinly used from 1980s
- Autologous PBSCT from 1990s

Main features of autologous and allogeneic HCT

Autologous	Allogeneic			
donor and recipient is the same person	donor is another person, related or unrelated			
no immune problem no immunosupression	immune difference immunosupresion necessary			
high-dose chemotherapy is the main effect	immune treatment effect graft versus tumor efect, GvT			
	risk of GvHD higher risk of infection			
frozen graft	mostly native graft			

Other types of HCT

Syngeneic transplantation (allogeneic)

- from identical twin
- no GvT, higher risk of relaps

Haploidentical transplantation

- family donor, identical in only 1 haplotype
- mainly if no other donor is available
- requires specific immunosupression

Cord blood transplantation

low number of hematopoietic cells for adult transplantation

Collection of hematopoietic cells preparation of the graft

- Bone marrow collection (from illiac bones)
 - no stimulation, general anesthesia, 1 night hospital stay
 - 1000 mL of bloody marrow: centrifugation
 - collection of buffy coat (between red cells and plasma)
 - return of red cell mass to the donor

Peripheral blood stem cell collection

- bone marrow stimulation necessary (several days)
 - G-CSF (healthy donors for allogeneic HCT)
 - cytotoxic regimenn + G-CSF (for autologous SCT)
- blood cell separation (extracorporal centrifugation)
- buffy coat removal (CD34+ cells), plasma and RC return

Different types of allogeneic HCT

Various combinations for transplant treatment

related family donor typically sibling

unrelated donor from a register

HLA identical donor 5/5 identity

HLA non-identical donor 1 or 2 missmatches

myeloablative conditioning

non-myeloblative needs more immunosupression

peripheral blood stem cells

bone marrow cells

Total Body Irradiation, TBI

as part of conditioning prior HCT

- Effects of TBI in conditioning prior to alloHCT
 - cytotoxic effect (anticancer tratment effect)
 - imunosupression
 - spacing effect in bone marrow
- Doses of TBI in HCT
 - myeloablative dose 12-15 Gy, 8-12 fractions, 4 days
 - low-dose TBI 2-8 Gy, 1-4 fractions
- Regimens currently used in this dept
 - myeloablative 10 Gy (5 fractions by 2 Gy)
 - non-myeloablative 4 Gy or only 2 Gy
- Conditioning need not contain TBI

Immunosupression in alloHCT

starts as prophylaxis since conditioning

Anti-thymocyte globulin, ATG

- rabbit globulin, halflife 20 days
- inhibition of human T-lymfocytes
- i.v. infusion, risk of reaction requires prophylaxis
- part of conditioning

Cyclosporin A (CsA) i.v. or capsules

- calcineurin inhibitor, inhibits T-lymphocyte activation
- starts prior to transfusion of the graft
- continues for several months

CsA is usually combined (2-drug regimen)

- methotrexate (MTX) Day +1, +3, +6, +11
- mycophenolate mofetil

Immune effect of the graft

is mediated by cytotoxic T-lymfocytes

Arrangement of allogeneic HCT

model situation

Combined immunosupression (6 months)

Conditio	Graft transfusion	BM depression	Engraft	Dis
ning		Neutropenia	ment	charge
6-12 days	Day 0	14-20 days		

Main reasons for allogeneic HCT

- Acute leukemia (AML, ALL)
 - after prior induction and consolidation chemotherapy
- Myelodysplastic syndrome
 - □ sometimes as first-line treatment
- Chronic lymphoproliferation
 - malignant lymphoma, CLL
 - mostly after failure of prior treatment
- CML
 - after failure of targeted therapy with TKIs
- Aplastic anemia (nonmalignant disease)

Non-myeloablative regimens, NMR

characteristics and advantages

Lower total dose of cytotoxic drugs/TBI

- lower side effects, lower toxicity
- myeloablative regimens are suitable up to 40 yr

NMRs are good options for

- patients > 40 yr, up to 65 yr
 decreased organ function reserves compared to young pts.
- comorbidity (chronic disease)

Specific complications after allo HCT may be lifethreatening and may cause death

- Mucositis (mucosal toxicity of conditioning)
 - oropharyngeal
 - gastrointestial (both can be severe)
- Veno-Occlusive Disease, VOD
 - Sinusiodal Obstructive Syndrome, SOS
- Infections owing to prolonged neutropenia and immunosuoression
 - bacterial, including sepsis
 - deep fungal (tissue) infection (invasive)
 - viral
- Acute Graft versus Host Disease, GvHD

Principals of autologous PBSCT

High-dose chemotherapy (HD chemo)

- brings all treatment effect
- qualitatively higher as compared to conventional dose
- overcomes heterogeneity od tumor tissue
 - areas/cells with lower chemosensitivity
- high dose of cytotoxic agents kill much more cancer cells
- alkylating agents are suitable for HD treatment

Transfusion of stem cells (graft) is supportive

- enables to overcome myelotoxicity of HD chemo
- auto PBSCT is only suitable for chemosensitive tumors

Arrangement of autologous HCT

model situation

G-CSF

Conditi ning	0	Graft transfusion	ı	Neutropenic period	Engraft ment	Dis charge
1-6 day	S	Day 0		10-15 days		
-6	-1	0	+1	+10	+14	+15

Main reasons for autologous PBSCT

transplantation is not the option for advanced disease

Malignant lymphoma

- only after failure of 1st line treatment
- requires to use salvage regimen prior to autoPBSCT
- reduction of tumor burden confirms chemosensitivity

Multiple myeloma

- used routinely after several cycles of 1st line treatment
- up to 70 yr in good biological age
- High Dose (HD) melphalan for conditioning
- prolongs life, but is not curative

Exceptionally acute leukemia

if unsuitable for allo HCT

Antimicrobial therapy in HCT

Prophylaxis in HCT

- pneumocystis jiroveci (carinii): co-trimoxazole
- herpes viral infections: aciclovir
- fungal infections: fluconazole or posaconazole

Preemptive treatment

- PCR confirmation of CMV reactivation positive laboratory tests with no clinical signs
- Empirical treatment due to clinical sings
 - antibacterial: from diagnosis of FN / sepsis
 - □ antifungal: Day 5-7 in persistent fever/signs
- Treatment of proved infection

Invasive Fungal Infections, IFIs

Invasive Fungal Disease IFD

Possible IFD

□ host factors and clinical signs (without mycological evidence)

Probable IFD

- host factors identifying the patient at risk
- clinical signs/symptoms consistent with IFD halo sign/air-crescent sign/cavity on pulmonary HRCT scan
- mycological evidence
 culture or microscopic analysis
 indirect tests: antigen detection (galactomannan, glucan)

Proven IFD

- histological analysis
- culture of a tissue specimen from the site of disease

Oropharyngeal mucositis in HCT

presentation and treatment

Symptoms/signs: mouth pain, stomatitis, mucosal ulceration, dysphagia, salivation, acumulation of mucus, aspiration

Pain management

- opioids, continuously
- □ NSAIDs, short infusions (prior to meals), around the clock

Rinses of the mouth

- benzydamin (locally acting NSAID)
- □ antiseptics (chlorhexidine, povidon iodine)
- calcium phosphate precipitating formulation

Nutritional support

- ONS for sipping
- parenteral nutrition

Gastrointestinal mucositis in HCT

presentation and treatment

Symptoms/signs: diarrhea, flatulence, abdominal pain, crampi, nausea, vomiting

Treatment of diarrhea

- loperamide, diphenoxylate
- octreotide (somatostatin analgue)
- fidaxomycin in Clostridium difficile infection

Pain management

- peripheral analgetics, spasmolytics
- opioids

Nutritional support

total parenteral nutrition

The End

