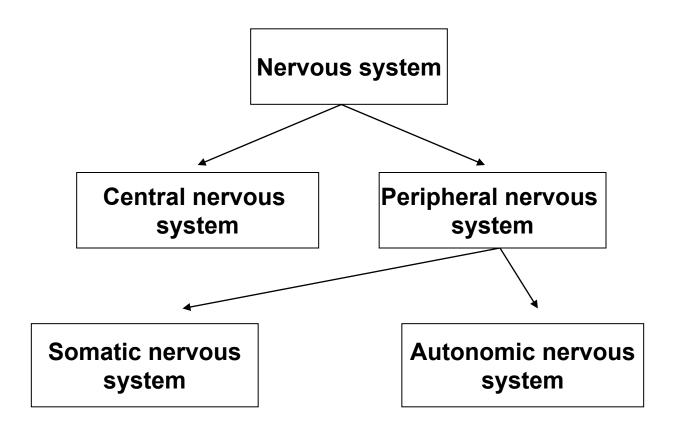
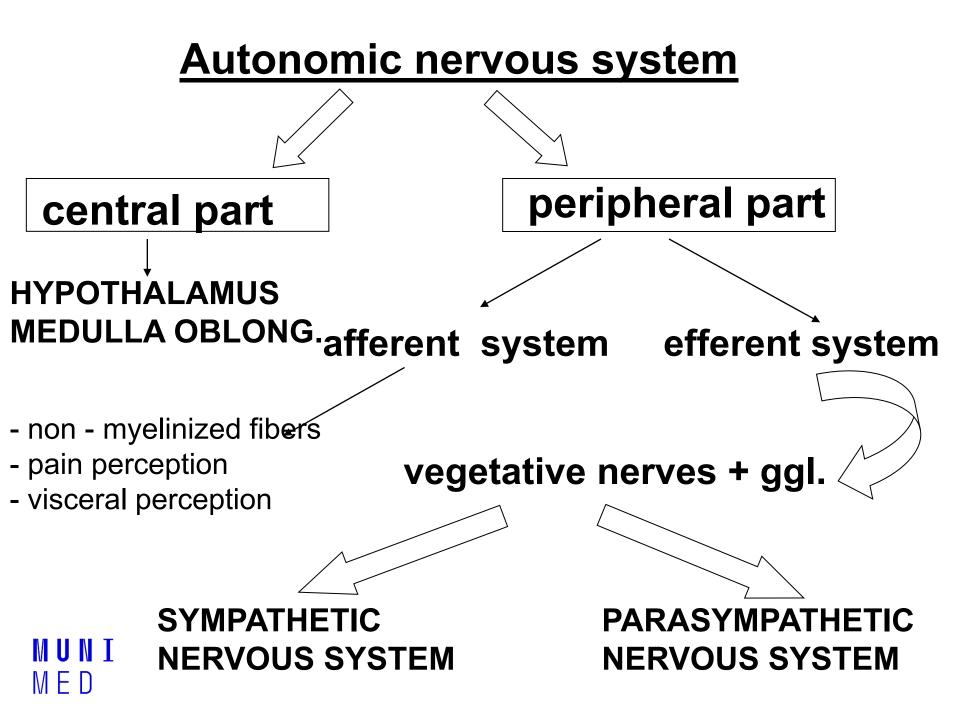
MUNI MED

PHARMACOLOGY OF PERIPHERAL NERVOUS SYSTEM

AUTONOMIC NERVOUS SYSTEM


Copyright notice


The presentation is copyrighted work created by employees of Masaryk university.

Students are allowed to make copies for learning purposes only.

Any unauthorised reproduction or distribution of the presentation or individual slides is against the law.

Department of Pharmacology

Main functions of ANS

 contractions and relaxations of smooth muscles

 $M \vdash D$

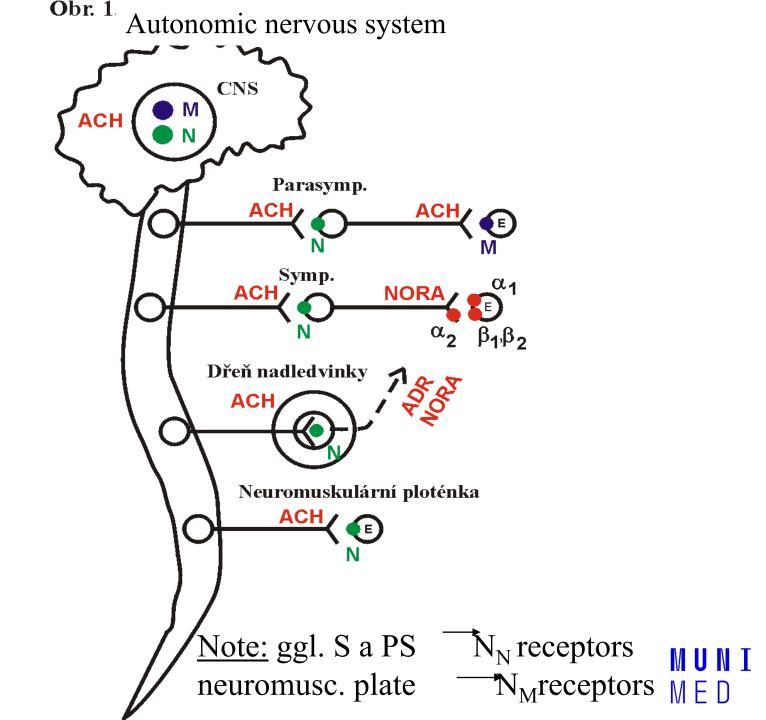
- function of all exocrine and some of endocrine glands
- heart functions
- metabolic functions

ANS

Sympathetic

- = adrenergnic system
- thoracolumbal s.
- fight or flight
- noradrenaline(NA)
- α a ß receptors

Parasympathetic

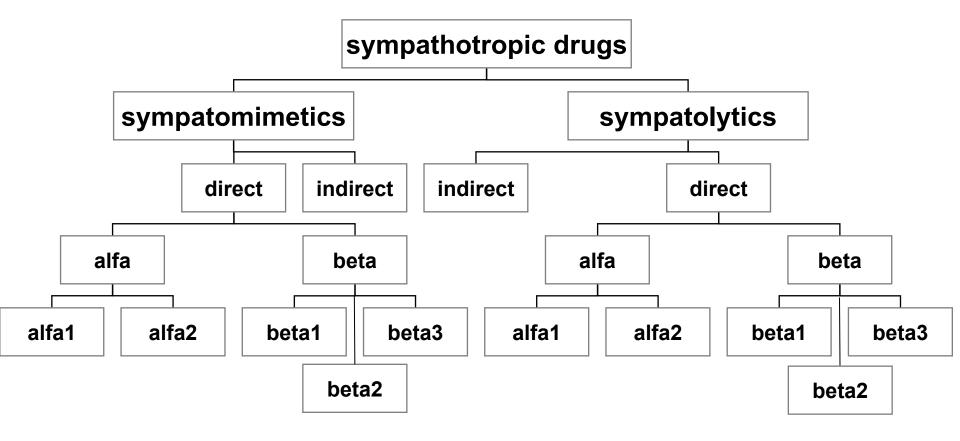

- = cholinergnic system
- craniosacral s.
- rest and digest
- acetylcholine
- N a M receptors

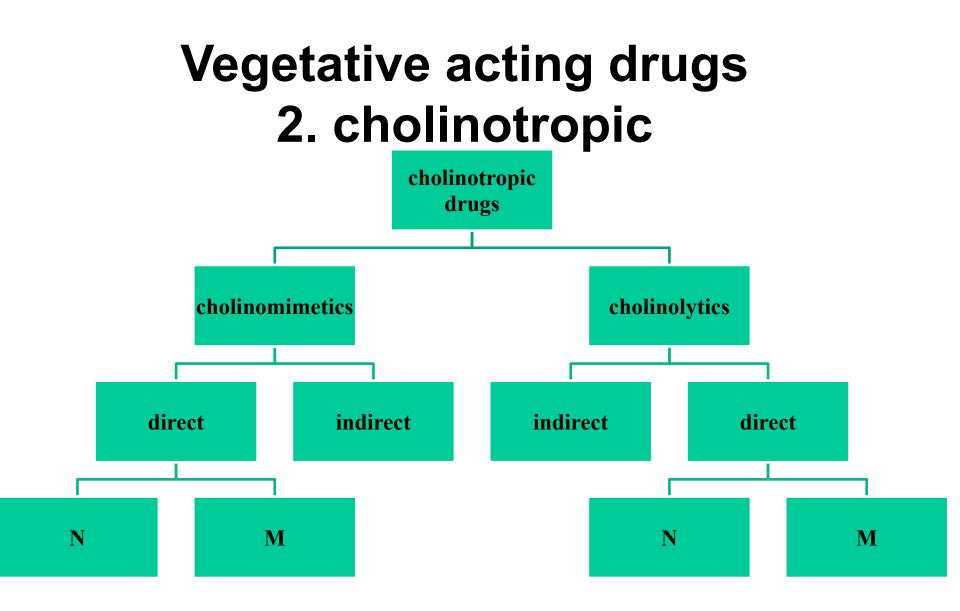
 $M \vdash D$

Autonomic nervous system

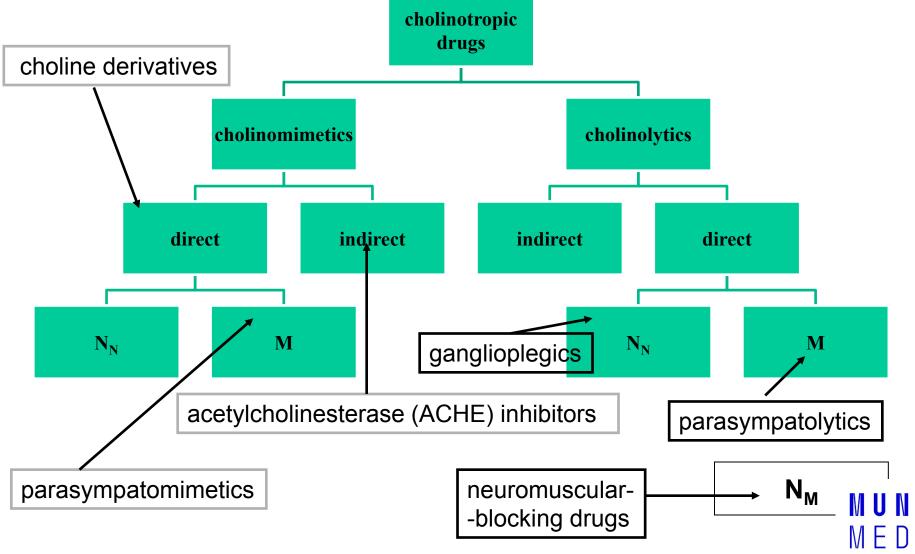
The activity is mutually regulated

- heterotropic interactions
- homotropic interactions
- most of visceral organs is inervated by both S and PS
- opposite activity bronchi, heart, bladder,,...
- similar action salivary glands
- only S blood vessels

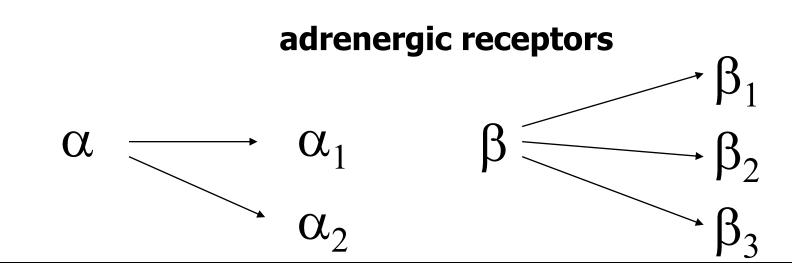



Autonomic acting pharmaceuticals

On the basis of mechanism of action - drugs:


- binding to the receptors for Ach or NA:
 a) starting reaction = agonist DIRECT MIMETICS
 b) receptor blockade = antagonist DIRECT LYTICS
- 2. changing the synaptic concentration of NT intervene in the fate of the Ach or NA (affect the synthesis, storage, release from nerve endings, inactivation); do not bind directly to receptors on the effector organs
 - a) increase of NT effect = **INDIRECT MIMETICS**
 - b) decrease of NT effect = **INDIRECT LYTICS**

Vegetative acting drugs 2. sympatotropic

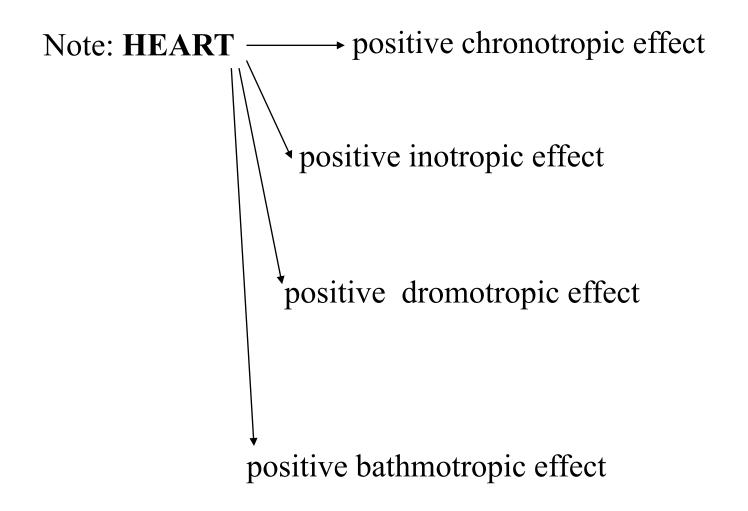


Vegetative acting drugs 2. cholinotropic

ANS RECEPTORS

cholinergic receptors

-<u>skeletal muscle N_M</u> -<u>vegetative ganglia N_N -(<u>CNS</u>)</u>



M₁, M₂, M₃, M₄, M₅

				1
organ	receptor		sympathetic system	parasympathetic system
heart	ß ₁	Μ	+ chrono, dromo, bathmo, inotropic	 - chrono, dromo bathmo, inotrop.
еуе	α_1 β_2	Μ	mydriasis acomodation into the distance	miosis acom.to close
respiratory tract	(α ₁) <u>β</u> 2	Μ	bronchoconstriction bronchodilatation	<u>bronchoconstriction</u> ↑secretion
blood vessels	α ₁ (α ₂) β ₂	Μ	<u>vasoconstriction</u> vasoconstr. dilatation (coronary, blood vessels in skeletal muscles)	dilatation MUNI MED

organ	receptor		sympathetic system	parasympathetic system
GIT	$\frac{\underline{\alpha}_{1}}{\alpha_{2}}$ $\underline{\beta}_{2} > \beta_{1}$	M	↓ motility and tone sphincter contraction secretion inhibition	 ↑ motility sphincter relaxation secretion stimulation ↑ gastr. secretion
urinary bladder	$lpha_1$ $eta_{2,}$ eta_3	M ₃	sphinct. contraction relax. of the bladder wall	sphinct. relaxation contract. of the bladder wall
kidney	<u>β</u> 1>β2		↑ renin secretion	
uterus	α ₁ β ₂		contraction relaxation-tocolysis	MUN] Med

organ	receptor	sympathetic system	parasympathetic system
liver	α ₁ , β ₂	glycogenolysis gluconeogenesis	
pancreas	α ₂ β ₂	↓insulin secretion ↑insulin secretion	
sexual organs	α_1 M	ejaculation	erection
glands	$\begin{array}{ccc} \alpha_1 & M \\ \beta_2 \end{array}$	sparse secretion viscous secretion	sparse significantly increased secretion
			MUNI Med

Adrenergic receptors

- metabotropic
- $\alpha_1, \alpha_2 \ a \ \beta_1, \beta_2 \ a \ \beta_3$
- stimulated by noradrenaline (norepinephrine)

Receptor α_1 stimulation:

- <u>*vasoconstriction*</u> (skin, mucous membranes, splanchnic area,..)
- <u>mydriasis</u>

 $(+\downarrow intraocular pressure)$

- contraction of pregnant uterus
- <u>ejaculation</u>
- <u>urinary bladder sphincter contraction, GIT sphincter</u> <u>contraction</u>

 $M \vdash \Pi$

- glycogenolysis and gluconeogenesis stimulation
- (reduce secretion of bronchial glands)

Receptor α_2 stimulation:

- (presynaptic) *increased NA release* (espec. in CNS)
- stimulation of <u>platelet aggregation</u>
- *vasoconstriction in local application*, otherwise the influence of stimulation of central receptors to reduce sympathetic tone and BP
- <u>hypotensive effect of central mechanism</u>
- *inhibition GIT secretion*
- *inhibition of lipolysis, increased fat storage*

Receptor β_1 stimulation :

<u>heart:</u>

- 1 automaticity (+ **bathmotropic**) AV node, ventricles
- **î** force of heart contraction (**inotropic effect**)
- 1 conduction (dromotropic effect)
- ① oxygen consumption

kidney:

• ① renin secretion

Receptor β_2 stimulation:

- vasodilatation, espec. in skeletal muscles ("preparation for fight or flight"), ↓ diastol. BP, vasodilatation in coronar blood vessels
- <u>bronchodilatation</u>
- *relaxation of uterus* (indic. in impending preterm birth)
- *intestine wall relaxation*
- *intestinal passage decrease*
- urinary bladder wall relaxation
- *glycogenolysis* ↑ glycemia, increased insulin secretion

 $M \vdash D$

• blockade of mast cells degranulation

Receptor β_3 stimulation:

- <u>lipolysis</u>
- urinary bladder wall relaxation (m. detrusor)

Cholinergic receptors

MUSCARINIC:

- <u>M₁("neural")</u> CNS, peripheral neurons,parietal cells of stomach, (glands with external secretion)
- <u>M₂ ("heart")</u> heart (<u>SA</u>, atria, AV, ventricles), (smooth muscle (GIT), neuronal tissue), presynapt. neur.endings
- <u>M</u>₃ glands, blood vessels (smooth muscle, hl. sval, endothelium), <u>smooth muscles</u>: bronchial muscles, GIT, urinary bladder, eye
- M₄ salivary glands, GIT (muscles), eye, CNS
- M₅ lungs, CNS

MUNI MED

Cholinergic receptors

 $M \vdash D$

- M metabotropic
- stimulated by acetylcholine
- N coupled with ion channels
- stimulated by nicotine