# Regulation

# in cardiovascular system

# Types of regulation - general view

2 basic types:
 ✓ Nervous regulation
 ✓ Humoral regulation
 ✓ Feedback control - negative
 ✓ - positive

autoregulation – local regulation – system regulation

### REGULATION IN CARDIOVASCULAR SYSTEM

Main function:

- keep relatively constantaneous arterial blood pressure
- Keep perfusion of tissues

### **Regulation of vessels tone**

 Tone of the vessels = basic tension of the smooth muscle inside of the wall (vasoconstriction x vasodilatation)

Regulation - local autoregulation
 - system regulation

# Autoregulation

Autoregulation – the capacity of tissues to regulate their own blood flow

**Myogenic theory** – Bayliss phenomenon (as the pressure rises, the blood vessels are distended and the vascular smooth muscle fibres that surround the vessels contract; the wall tension is proportional to the distending pressure times the radius of the vessels – law of Laplace)



# Autoregulation

- Metabolic theory vasodilator substances tend to accumulate in active tissue, and these metabolites also contribute to autoregulation
  - ending products of energetic metabolism CO<sub>2</sub>, lactate acid, K<sup>+</sup>
  - effect of hypoxia (circulation: vasodilatation x pulmonary circulation: vasoconstriction)
  - Adenosin coronary circulation: vasodilatation

# Autoregulation

- by substances which releasing from:
  - endothelium
  - tissues

### **Substances secreted by the ENDOTHELIUM** *Vasodilatation:*

Nitric oxide (NO) from endothelial cells (originally called: EDRF) Prostacyclin is produced by endothelial cells

Vazoconstriction:

Endothelins (polypeptids – 21peptides) three isopeptides: ET 1, ET 2, ET 3

### **Substances secreted by the tissues:** Histamine – primarily tissue hormones.

General affect: vasodilatation - decrease periphery resistence, blood pressure

### KININS: 2 related vasodilated peptides Bradykinin + lysylbradykinin (kallidin).

Sweat glands, salivary glands 10x strongers than histamine Relaxation of smooth muscle, decrease blood pressure

# **Systemic regulation**

#### **By hormones**

Catecholamines – epinephrine, norepinephrine - effect as activation of sympathetic system RAAS - stress situation ADH - general vasoconstriction Natriuretic hormones - vasodilatation

# **Neural regulatory mechanism**

#### Autonomic nervous system

#### Sympathetic: vasoconstriction

All blood vessels except capillaries and venules contain smooth muscle and receive motor nerve fibers from sympathetic division of ANS (noradrenergic fibers)

- Regulation of tissue blood flow
- Regulation of blood pressure

#### Parasympathetic part: vasodilatation

Only sacral parasympathetic cholinergic fibres (Ach) inervated arteriols from external sex organs

#### The regulation of the heart:

Rami cardiaci n. vagi

**Cardiac decelerator center** - medula oblongata (ncl.dorsalis, ncl. ambiguus) – parasympathetic fibres of nervus vagus

: vagal tone (tonic vagal discharge)

Negative chronotropic effect (on heart rate) Negative inotropic effect (on contractility) Negative dromotropic effect (on conductive tissue)

#### The regulation of the heart:

– nn. cardiaci

**Cardiac accelerator center** – spinal cord, sympathetic ganglia – sympathetic NS

Positive chronotropic effect (on heart rate) Positive inotropic effect (on contractility) Positive dromotropic effect (on conductive tissue)

- Vasomotor centre (regulation for function of vessels) Medula oblongata
- ✓ presoric area (rostral and lateral part vasoconstriction increase blood pressure

*depresoric area* (medio-caudalis part – vasodilatation, decrease of blood pressure)

Influence by central nervous system

- cerebral cortex
- limbic cortex
- hypothalamus



### **Regulation of blood pressure**

- Short term regulation
  - baroreflex

#### Middle - term regulation

- humorals regulation
- sympathetic catecholamines
- RAAS
- ADH

#### Long – term regulation

- kidney regulation

# Short term regulation **BAROREFLEX**



### original record of waves in circulatory parameters (photoplethysmography by Peňáz)





# **Variability of circulatory parameters TIME - DOMAIN METHODS** Martinal Value - statistical methods ariační Range zpětí SD SD Minimalvalue

### **Example: ECG – Holter monitoring**



| 840<br>828 | x<br>y x |   | Variability of circulatory parameters<br>TIME - DOMAIN METHODS<br>- geometrical methods |   |       |   |     |            |     |      |  |
|------------|----------|---|-----------------------------------------------------------------------------------------|---|-------|---|-----|------------|-----|------|--|
| 700        | y        |   | V                                                                                       |   | 1000  |   |     |            |     |      |  |
| /30        |          | y | ~                                                                                       |   | 1000  |   |     |            |     |      |  |
| 808        |          |   | У                                                                                       | X | 950 - |   |     |            |     |      |  |
| 856        |          |   |                                                                                         | У | 900 - |   |     |            |     |      |  |
| 768        |          |   |                                                                                         |   | 0.50  |   |     |            |     |      |  |
| 780        |          |   |                                                                                         |   | 850 - |   |     |            |     |      |  |
| 000        |          |   |                                                                                         |   | 800 - |   |     | <b>O O</b> |     |      |  |
| 000        |          |   |                                                                                         |   | 750 - |   |     | •          |     |      |  |
| /56        |          |   |                                                                                         |   | 700   |   |     |            |     |      |  |
| 708        |          |   |                                                                                         |   | /00 - |   |     |            |     |      |  |
| 728        |          |   |                                                                                         |   | 650 - |   |     |            |     |      |  |
| 756        |          |   |                                                                                         |   | 600 - |   |     |            |     |      |  |
| 732        |          |   |                                                                                         |   | 60    | 0 | 700 | 800        | 900 | 1000 |  |
| 708        |          |   |                                                                                         |   |       |   |     |            |     |      |  |

- Spectral analysis:
- Carried out under standard conditions at various maneuvers (supine, standing); evaluated with 300 representative intervals RR / NN /
- Another mathematical processing (Fourier transform) -length RR intervals are converted to cycles in Hz
- The spectrum is divided into several components

   low (LF: the sympathetic modulation) and high
   frequency (HF: vagal modulation)
- People with reduced heart rate variability have a 5 times higher risk of death



