

The respiratory tract

Histology of respiratory tract

Cellular components of bronchial mucosa

The respiratory membrane

Chronic polypous rhinitis

chronic proliferative inflammation

➡ allergy

repeated acute inflammations

Polypous chronic rhinitis

x Gross:

- mucosal polyps, often multiple
- ➡ variable size (mm 2 cm)

x Micro:

- oedematous mucosal connective tissue
- Iymphoplasmocytic reactive infiltration, admixture of eosinophils, event. neutrophils
- mucinous hyperplasia
- covered by hyperplastic respiratory epithelium, squamous metaplasia possible

Polypous chronic rhinitis

Polypous chronic rhinitis

Asthma bronchiale

recurrent attacks of bronchospasm with exspiratory dyspnoea

- status asthmaticus:
 - ⇒ increased frequency of attacks permanent bronchospasm
 - ⇒ may be lethal

*etiology:

Hypersenzitivity I.type

× variants:

Extrinsic (environmental factors):

Atopic, IgE → mast cells degranulation..., bronchioloconstriction, increased vascular permeability and mucus secretion + eosinophils activation

Intrinsic: hyperreactive URT, non-atopic

Asthma bronchiale

Gross (patients who died during status asthmaticus):

- Þ acute emphysema
- mucus plugs in peripheral bronchi and bronchioles

✗ Micro:

⇒ intraluminal:

• mucus, eosinophils, Charcot-Leyden crystals, cellular detritus

⇒ bronchial wall:

- oedema of the mucous membrane
- thickening (collagenisation) of the sub-basement membrane tissue
- mucous glands hypertrophy, eosinophil-rich inflammatory infiltrate

Asthma bronchiale

- permanent abnormal dilatation of bronchi
 arising from the weakening of the walls or changes in air pressure
- ***** morphology:
 - ➡ cylindrical
 - ⇒ saccular
 - ➡ fusiform

aetiology:

congenital/hereditary conditions:

- incomplete development of bronchial wall
- Kartagener syndrome
 - primary ciliary dysgenesis

➡ acquired:

- chronic inflammations
- changes of the pressure
 - chronic pulmonary collapse

- ⇒ inflammations:
 - chronic purulent bronchitis
 - bronchopneumonia including abscess formation

➡ fibrosis, pulmonary hypertension and cor pulmonale

⇒ secondary AA amyloidosis

Pulmonary emphysema

- regressive change (atrophy)
- * abnormal permanent enlargement of the airspaces in pulmonary tissue
- aetiology (combination of several factors):
 - ➡ smoking
 - \Rightarrow deficiency of α 1-antitrypsin

× types:

- ➡ alveolar:
 - acute
 - chronic

➡ interstitial – airway rupture (trauma)

Alveolar emphysema

× acute:

- ⇒ alveolar septa are not destroyed
- rather pulmonary hyperinflation or distention

x chronic:

- permanent enlargement of airspaces distal to terminal bronchioles
- destruction of alveolar walls
- part of COPD (chronic obstructive pulmonary disease)
 - combination of chronic bronchitis and chronic emphysema

Alveolar emphysema

× types:

⇒ centrilobular (centriacinar):

- upper lobes apex, more in males,
- most commonly seen in smokers without congenital antitrypsin deficiency (but + chronic bronchitis), possible professional disease - dust

⇒ panacinar:

often lower lung zones; significant microscopic changes; --antitrypsin deficiency, old age

⇒ distal acinar (paraseptal):

 adjacent to pleura, upper lobes foci of fibrosis, formation of cystlike structures – bullae (pneumothorax risk)

\Rightarrow irregular:

associated with scarring, usually postinflammatory

Alveolar emphysema

× Gross:

enlarged, voluminous lungs, light, pale, dry, emphysematous bullae

Micro:
 thinning and destruction of alveolar walls

deformation of bronchiolar walls

chronic inflammatory changes

Emphysema

pathogenesis and complications: thinning of alveolar walls and capillaries \rightarrow reduced blood supply \rightarrow complete destruction of alveolar walls \rightarrow difficult expiration + decreasing of lung capacity \rightarrow hypoxemia \rightarrow vasoconstriction \rightarrow secondary pulmonary hypertension $\rightarrow \rightarrow$ cor pulmonale

Emphysema

Normal lung and pulmonary emphysema

Bullous emphysema

Panacinar emphysema

Hemorrhagic pulmonary infarction

× aetiology:

thrombembolism of a. pulmonalis branches in the setting of compromised cardiovascular status (passive venous congestion)
 typically hemorrhagic

often in lower lung lobes adjacent to pleura

often multiple

healing:

granulation tissue, later formation of fibrous scar

Hemorrhagic pulmonary infarction

× Gross:

- ⇒ wedge-shaped focus of tissue with sharp borders
 ⇒ dark red-blue (new), yellowish-grey (older)
 ⇒ variable size
- solid consistency

✗ Micro:

coagulative necrosis of lung parenchyma
 large extravasations of erythrocytes
 formation of abscess at secondary infection
 reactive acute fibrinous pleuritis
 healing – scarring + emphysema (diff.dg. x tumor)

Hemorrhagic pulmonary infarction

1.

2.

Hemorrhagic pulmonary infarction

Necrotic lung parenchyma

- * associated with chronic <u>left-sided</u> cardiac insufficiency
 - ➡ etiology:
 - ischemic heart disease, systemic hypertension, valvular disorders, cardiomyopathy
- clinically ("asthma cardiale"):
 - ➡ cough
 - rusty sputum
 - shortness of breath (dyspnoea)
 - ortopnoea
 - paroxysmal nocturnal dyspnoea
 - relieved by sleeping with elevated head ("additional pillows needed")

K Gross:

- slightly enlarged lungs
- ⇒ solid consistency
- ➡ rusty-brown color
 - rusty/cyanotic lung induration

✗ Micro:

- congestion of alveolar capillaries
- alveolar hemorrhage with siderophages:
 - histiocytes with cytoplasmic granules of hemosiderin
- ➡ fibrotization of alveolar walls

Perls' reaction - iron pigment hemosiderin colored blue

Alveolar oedema

fluid accumulation in alveoli

clinically:
expectoration of bubbly watery pinkish sputum

patogenesis:

➡ ↓ intravascular osmotic pressure

Iymphatic drainage obstruction
Alveolar oedema

x Gross:

Iungs enlarged, heavy, conested
 bubbly fluid flowing out of the tissue +/- present in bronchi

× Micro:

alveoli filled with pink, homogenous fluid + air bubbles
 dilatation and hyperemia of alveolar wall capillaries

Alveolar oedema

Amniotic fluid aspiration

massive aspiration associated with fetus asphyxia
umbilical cord or placental disorders

clinic:

changes in fetal heart rate – immediate medical intervention necessary!

Amniotic fluid aspiration

× Micro:

- ⇒ keratin masses in bronchi and alveoli
- ⇒ amniotic cells
- ⇒ lanugo (thin primary hairs)
- meconium bodies (from fetus intestinal content)
- ⇒ infected amniotic fluid → fetal death, adnate pneumonia

Amniotic fluid aspiration, keratin in bronchiole

Amniotic fluid aspiration, keratin in alveoli

Pulmonary inflammations classification

superficial:

- ➡ lobar pneumonia
- ⇒ bronchopneumonia

interstitial

- purulent (abscess, gangrene)
- non-purulent
 - infectious (acute) atypical pneumonia
 - non-infectious (chronic)

Lobar pneumonia

- superficial diffuse fibrinous inflammation
- Affecting major part / entire lobe of a lung
 - ⇒ similar histological features in the same time
 - ⇒ older/immunocompromised patients → lethal without antibiotic therapy
- untreated 4 stages:
 - congestion (+ oedema)
 - red hepatization (inflammatory infiltrate + congestion)
 - grey hepatization (fibrin)
 - resolution (resorption)

healing:

- ➡ ad integrum
- ⇒ complications:
 - empyema
 - abscess
 - carnification
 - sepsis
 - metastatic purulent inflammation
 - e.g.leptomeningitis, pericarditis, endocarditis...

Lobar pneumonia, red hepatization

Lobar pneumonia, grey hepatization

1. Alveolar walls

2. Alveoli fulfilled with fibrinous exsudate

Lobar pneumonia

Bronchopneumonia

- superficial type of pneumonia characterized by multiple foci of isolated, acute consolidation, affecting one or more pulmonary lobules
- inflammation spreads from bronchi
- aetiology:
 - ⇒ streptococcus, staphylococcus, haemophilus, klebsiella
 - ➡ legionella micro:
 - fibrinous purulent bronchopneumonia associated with fibrinous pleuritis
- possible secondary confluent inflammation, overlap patterns
- inflammatory complications:
 - ⇒ pleuritis
 - ➡ abscess
 - 눡 sepsis

Bronchopneumonia

× Gross:

➡ oedema, hyperemic tissue with small grey-yellow foci

✗ Micro:

- ⇒types of exsudate:
 - serous
 - fibrinous
 - suppurative (purulent)

abscessing form – suppurative destruction of alveolar walls

Bronchopneumonia

Abscessing bronchopneumonia

2. Abscess with destruction of alveolar walls

Infectious interstitial pneumonia

Etiology:

- ➡ viruses (incl. rubeola, varicella)
- ➡ mycoplasma, chlamydia, coxiella, etc.
- ⇒ pneumocystis

Symptoms:

fever, dyspnoea, dry cough, auscultation may be normal (empty alveoli), x massive changes on X-ray

Healing:

⇒ ad integrum

- secondary bacterial pneumonia
- cryptogenic organizing pneumonia possible

Infectious interstitial pneumonia

× Micro:

- ⇒ 1) common histological features:
 - oedema and dilatation of alveolar walls
 - interstitium with mononuclear infiltrate (lymphocytes, macrophages, plasma cells)
 - possible ARDS "hyaline membranes" formation
 - necrotic pneumocytes and fibrin
 - eosinophilic material lining the lumen of alveoli

Infectious interstitial pneumonia

⇒ 2) inclusion pneumonia:

- typical inclusions and cytopatologic changes of pneumocytes
- CMV:
 - large pneumocytes with basophilic intranuclear inclusions
- Varicella, adenovirus:
 - intranuclear inclusions
- Measles:
 - giant cell pneumonia
 - multinucleated cells in alveoli and bronchioli (Warthin-Finkeldey cells)
- Pneumocystis pneumonia

Pneumocystis pneumonia

× etiology:

Pneumocystis jirovecii

(opportunistic fungal infection, immunocompromised patients)

× Micro:

widened alveolar septa, intraalveolar bubbly eosinophilic material:

- pneumocystis capsules
- ⇒ special histological stains:
 - Groccott silver impregnation (black)
 - Giemsa (blue)
 - PAS

Pneumocystis pneumonia 🚔

Pneumocystis pneumonia

1. Alveolar walls filled with monocellular infiltration 2. Bubbly eosinophilic material

Neinfekční intersticiální pneumonie

Klasifikace:

Kryptogenní fibrotizující alveolitida (idiopatická intersticiální pneumonie)

- Běžná
- Nespecifická
- Deskvamativní
- Obrovskobuněčná

Extrinzická fibrotizující alveolitida (hypersenzitivní pneumonitida)

Idiopathic pulmonary fibrosis

- usual interstitial pneumonia" (UIP):
 - ⇒70% of all of idiopathic interstitial pneumonias
 - ➡ etiology:
 - in some collagenosis or in association with abnormalities of serum proteins
 - smoking
 - unclear
 - dismal prognosis: lung transplantation

⇒Mikro:

- subpleural and a paraseptal foci of fibroblasts/fibrosis and chronic inflammatory infiltrate, cystic spaces - honeycombing
- irregular distribution of histological features temporal heterogeneity

Idiopathic pulmonary fibrosis

non-specific interstitial pneumonia (NSIP): commonly women, without link with smoking

⇒ better prognosis

treated with corticosteroids

➡ Micro:

- chronic interstitial inflammation +/- fibrosis
- no honeycombing
- regular distribution of changes

Usual interstitial pneumonia

Usual interstitial pneumonia

Usual interstitial pneumonia

1 Hyperplastic alveolar epithelium

2 Thickened alveolar walls with chronic inflammatory infiltration

3 Neutrophils in alveoli

- an occupational and restrictive lung disease caused by the inhalation of specific dust
- sequels: inert (simple), fibrous, allergic, neoplastic
- high fibrogenicity of cristalline silica dust and asbestos
- × 3 basic types:
 - coal-worker`s pneumoconiosis
 - ⇒ silicosis
 - ⇒ asbestosis

Silicosis

 Chronic progressive pneumoconiosis
 Silicone dioxide particles (0,2-2µm) toxic to macrophages – focal necrosis + release of fibrogenic factors - fibrosis
 X-ray – reticular fibrosis, nodules, diffuse fibrosis
 lung insufficiency
 cor pulmonale

- ✗ Gross (stages):
 ⇒ reticular fibrosis
 - ⇒ silicotic nodules
 - progressive massive fibrosis
- ► Micro:
 - ➡ nodules with concentric arrangement of hyalinized fibers and necrosis
 - ➡ anthracophages in the periphery of the nodule
 - ➡ emphysema in adjacent pulmonary tissue
 - ⇒ particles seen under polarized light

Silicotic nodule - lung

<u>e</u>

breath

DAD (ARDS, RDS)

x clinical:

progressive respiratory insufficiency associated with shortness of and hypoxia, high mortality

× Etiology:

- ⇒ Primary ARDS:
 - lung inflammation/infection, aspiration of gastric content, mechanical trauma incl. chest contusion, fat embolism, near-drowning, ionizing radiation, inhaled irritants (smoke, chemicals),

Secondary ARDS:

- trauma (head) or sepsis
- acute pancreatitis
- renal insufficiency (uremia)
- burns
- hematologic conditions DIC, multiple transfusions
- chemical injury (heroin overdose, acetylsalicylates, ...)

× Gross:

- ⇒ heavy lung
- ⇒ dark red color
- ➡ boggy

✗ Micro:

exsudative phase:

• capillary congestion, oedema, hyaline membranes formation within 48 hours

⇒ proliferative phase:

- epithelium regeneration (type II. pneumocytes)
- hyaline membranes ingested by macrophages
- proliferation of fibroblasts in alveolar walls -> pulmonary fibrosis possible

6.3 DAD, proliferative phase - fibrotic stage – distinctly thickened interalveolar septa with a chronic inflammatory infiltrate.

Granulomatous inflammations

aetiology

A series the series of the ser

➡ special Ziehl-Neelsen stain

PCR more sensitive

delayed-type hypersensitivity
 (type IV. hypersensitivity)
 T cells-mediated immune memory response to TBC

antigens (granulomas)

Tuberculosis – morphological features

tbc granuloma – proliferative form

- → host resistance
- ⇒ specific granulation tissue: epithelioid macrophages + Langhans giant cells

tbc exsudate – exsudative form (meningitis)

- ➡ allergy
- serofibrinous exsudate + Orth cells (macrophages)

+ caseification

cheese-like, caseous necrosis – sensibilization?

+ colliquation (liquefaction)

- ➡ after release of proteolytic enzymes by neutrophils
- + calcification

Sarcoidosis

- chronic granulomatous inflammatory disease of unknown aetiology
- * affected tissue:
 - 눡 mediastinal lymph nodes, lungs, skin, eye
 - ➡ granulomas can affect any organ
- small regular granulomas similar to TBC granulomas, but without caseous necrosis, fibrosis usually more pronounced
- x cytoplasmic bodies of Langhans giant cells, not specific:
 - ⇒ asteroid inclusions
 - ⇒ Schaumann bodies

* dg. per exclusionem – necessary elimination of TBC, fungal infection etc.

Pulmonary chondrohamartom

hamartoma? benign tumor?

incidental X-ray finding

differential diagnosis x malignant tumors important!

Pulmonary chondrohamartom

× Gross:

- Þ whitish yellow
- ⇒ well demarcated
- ➡ lobular structure

Generally formed of mixture of homologous nonorganised afunctional tissues :

- ⇒ cartilage
- ➡ connective tissue
- ⇒ fat

tubular structures with epithelium

- 1. Cartilage
- 2. Fat tissue
- 3. Tubular structures with respiratory epithelium

Pulmonary chondrohamartom

- 1. Cartilage
- 2. Fat tissue
- 3. Connestive tissue
- 4. Tubular structures

Bronchogenic carcinoma

x incidence:

⇒ in CZE males 100/100 000 (the most common malignancy of men),

➡ females 25/100 000 (the 3rd most common malignancy of women, ↑ tendency)

aetiology:

- ➡ smoking
 - generally 20X higher risk in smokers
 - 20 cigarettes/day = 20 years, 40 cigarettes/day = 10 years...
 - magic threshold 200000 cigarettes
- Þ asbestos, Hg, Ni, As
- ➡ ionization
- ➡ radioactive radon
- dust particles
- ➡ familial predisposition

Bronchogenic carcinoma

- Most common primary malignancy
- ✗ 5 year survival 5 − 7 %
- ✓ 4 7 decenium, more commonly males
- Clinical symptoms:

weight loss, chronic cough, haemoptysis, dyspnoea, chest pain, paraneoplastic syndromes (ACTH, ADH, PTH)

Bronchogenic carcinoma

Iocal complications:

⇒ depends on the localization of the tumor:

- lung collapse, bronchiectasis, bronchopneumonia, gangrene
- Jeros cavern
 - destruction of vascular wall by necrotic mass of tumor
 - fatal bleeding

paraneoplastic syndromes

Aberrant production of peptide hormones (ACTH,ADH,PTH,..)

xclinical types:

⇒ small cell lung carcinoma (SCLC)

➡ non-small cell lung carcinoma (NSCLC)

- undifferentiated (high grade) neuroendocrine tumor
- × 20 % of all bronchogenic carcinomas
- associated with smoking
- Iocalized in lung hilus

early metastatic spread, widespread dissemination
 Iymphatic and hematogenous (LN, liver, brain, bones, kidney, adrenals, ...)

histologic types:

⇒small cell ("oat cell carcinoma")

intermediate (now included into small cell type)

⇒ combined

✗ Micro:

⇒ small cells with scant cytoplasm (size < 3 lymphocytes)

small round - elongated dark blue nuclei without obvious nucleoli (oat cell carcinoma)

➡ solid growth

neurosecretory granules in cytoplasm

chromogranin, synaptophysin

- 2 Infiltration of lymph nodes in hilus
- **3 Bronchus**
- 4 Vessels

Non-small cell lung carcinoma

- » squamous cell carcinoma
- × adenocarcinoma
 - Þ adenocarcinoma in situ
 - ⇒ minimally invasive:
 - non-mucinous
 - mucinous
 - mixed
 - ⇒ invasive:
 - lepidic
 - acinar
 - papillary
 - micropapillary
 - solid

Iarge cell lung carcinomaother, incl. mixed

Squamous cell carcinoma

x male 40%, female 20%

- strongly associated with smoking
- x typical perihilar localisation (central>peripheral)
- commonly slow progression from squamous metaplasia – dysplasia – ca in situ

⇒late metastases

✗ Micro:

squamous cell carcinoma of common type

• polygonal shaped cells in solid nests, keratin pearls, cell junctions

variable differentiation

Squamous-cell lung carcinoma

2. Tumor

Squamous cell lung carcinoma

- 1. Tumor localized in the periphery
- 2. Central necrosis

1. Tumor in bronchus

2. Segmental bronchus

Squamous cell carcinoma

- 1. Solid nests of malignant keratinocytes
- Keratin pearls 2.
- Stroma of the 3. tumor

Squamous cell carcinoma

1.

2.

Squamous-cell carcinoma

- 1. Cell junctions
- 2. Nucleus with prominent nucleoli

Adenocarcinoma

x male 20%, female 40%;

most cases in smokers, but the most common type in non-smokers

typically localized in the periphery, subpleural
Interpretation of the periphery is the symptoms in the periphery is the symptometry is the symptometry

***** formerly used term:

bronchioloalveolar adenocarcinoma (BAC) no more in use (but still present in WHO classification of lung tumors)

Adenocarcinoma

classification:

⇒ Adenocarcinoma in situ - AIS (size ≤3 cm):

- non/mucinous (earlier BAC),
- mucinous
- mixed
- no stromal/vascular/pleural invasion present

➡ Minimally invasive ACA (size ≤3 cm and ≤ 5 mm invasion): idem

- apart of lepidic growth other types of spread (papillary, solid....) or stromal invasion present
- no vascular/pleural invasion present

➡ Invasive ACA:

- Lepidic
- Acinar
- Papillary
- Micropapillary
- Solid

Adenocarcinoma

Structures of an acinary and papillary formed adenocarcinoma

Cytology of malignant cells - anisocytosis and anisokaryosis

Cytology of malignant cells - anisocytosis and anisokaryosis

AIS/minimally invasive ACA non/mucinous (earlier BAC)

AIS/minimally invasive ACA non/mucinous (earlier BAC)

Large cell lung carcinoma

undifferentiated non-small cell carcinoma

✗ Micro:⇒ atypical pleomorphic cells

absent features of small cell carcinoma, adenocarcinoma or squamous cell carcinoma

Large cell lung carcinoma

Large cell lung carcinoma 🚑

Large cell lung carcinoma

1. Pleomorphic tumor cells with prominent nucleoli

2. Necrotic area