MUNI MED

Bilirubin metabolism, jaundice

Practical – experimentally induced obstructive jaundice

Overview of bilirubin metabolism

Historical aspects of bilirubin metabolism

- 1916 van den Bergh
 - 2 different types of bilirubin
- 1933 Hans Fischer
 - bilirubin structure
- 1956 Edmund Talafant
 - bilirubin transformation in the liver
- 1968 Tenhunen
 - description of heme oxygenase
- 1987 Stocker
 - antioxidant properties of bilirubin

- ikterus
 - a yellow bird (Greek)
 - Baltimore oriole (Icterus galbula)

 $M \vdash 1$

Heme synthesis

- localization
 - bone marrow hemoglobin production erythropoiesis
 - liver cytochrome P450 metabolism of drugs and toxins
- occurs partly in mitochondria and partly in the cytosol – 8 reactions
 - initial substances are succinyl-CoA (from citric acid cycle) and glycine

 $\mathsf{M} \vdash \mathsf{D}$

- rate limiting enzyme ALA syntetase
- lead poisoning inhibits 3 enzymes of heme synthesis and leads to
 - insufficient heme synthesis and anemia
 - accumulation of byproducts
 - toxic

Bilirubin metabolism

- bilirubin is the final product of heme degradation
 - 85% from hemoglobin
 - 15% from myoglobin, cytochrome and premature destruction of RBC
- in reticuloendothelial cells
 - spleen, liver, bone marrow
- enzyme heme oxygenase
 - induced by raised heme level
- biliverdin reductase
 - cytosolic
- this type of bilirubin (=unconjugated, indirect)
 - insoluble in water
- in plasma bilirubin binds to albumin

MFD

Bilirubin metabolism

- bilirubin is carried bound to albumin
 - competition with certain medicaments and fatty acids
- albumin-free anion fraction
 - diffusion into tissues injury
- in physiologic conditions low bilirubin plasmatic concentration
 - can be replaced by some substances (e.g. salicylates)
 - important in nursing
- in the liver
 - free bilirubin is released from the albumin and moves into hepatocytes
 - process with great capacity
- in hepatocyte bilirubin undergoes conjugation
 - conversion into soluble conjugate which can be secreted into the bile

Bilirubin metabolism in the liver

- in hepatocytes
 - proteins Y and Z
- enzyme uridin diphosphate-glucuronyltransferase (UGT1A1)
 - family of conjugating enzymes
 - steroid hormones, drugs
- conjugation of bilirubin with glucuronic acid in endoplasmic reticulum generates mono- and diglucuronides
 - conjugated bilirubin
- specific transporter (cMOAT=MRP2) for release of conjugated bilirubin from hepatocyte
 - rate-limiting step
- conjugated bilirubin is secreted via the bile to the small intestine
 - highly efficient process

Bilirubin metabolism

- bilirubin passes through the bile ducts into the small intestine
 - deconjugation by bacterial enzyme βglucuronidase
 - production of urobilinogen (colourless)
 - urobilinogen is
 - re-absorbed (enterohepatic circulation)
 - or degraded into coloured urobilins and excreted in the feces
 - most of the absorbed urobilinogen is returned to the liver to be re-excreted into the bile
 - small amount excreted in the urine

Alternative pathways of bilirubin metabolism

- cytochrome P-448
 - low expression in the liver
 - increased in hyperbilirubinemia
 - can be induced
 - indol-3-carbinol
- direct secretion
 - unconjugated bilirubin
 - through the gut wall
 - passive diffusion

- enzyme bilirubinoxidase
 - low importance in humans

 $M \in D$

• substitution?

Summary

Unconjugated Bilirubin Albumin-**Conjugated Bilirubin** Unconjugated Bilirubin Urobilogen Heptatocyte Uptake Bilirubin Conjugation Heptatocyte Heme **Conjugated Bilirubin** Hb Secretion Macrophage 10 Heptacyte Kidney -Gall — Bladder Portal Vein Urine Intestine Urobilogen Feces - - Bacteria

SYSTEMIC CIRCULATION

Icterus/jaundice

- yellow discoloration of skin, mucose membranes and sclera
 - occurs when bilirubin concentration > 30 50 umol/l
 - deposition of bilirubin in tissues rich in elastin
- normal plasma level < 17 umol/l
- subicterus small increase (35 40 umol/l)
 - low-grade icteric condition, does not have to be obvious
- hyperbilirubinemia
 - increased plasmatic bilirubin level
- objective symptom
 - alert to presence of other problem
- marked icterus in conjugated hyperbilirubinemia

The causes of jaundice							
Туре	Cause	Clinical example	Frequency				
Prehepatic	hemolysis	autoimmune uncommon depends on region					
intrahepatic	infection	hepatitis A, B, C	common/very common				
	chemical/drug	acetaminophen alcohol	common common				
	genetic errors: bilirubin metabolism	Gilbert's syndrome Crigler–Najjar syndrome Dubin–Johnson syndrome Rotor's syndrome	1 in 20 very rare very rare very rare				
	genetic errors: specific proteins	Wilson's disease α_1 antitrypsin	1 in 200 000 1 in 1000 with genotype				
	autoimmune	chronic active hepatitis	uncommon/ rare				
	neonatal	physiologic	very common				
Posthepatic	intrahepatic bile ducts	drugs primary bilary cirrhosis cholangitis	common uncommon common				
	extrahepatic bile ducts	gall stones pancreatic tumor cholangiocarcinoma	very common uncommon rare				

© Fleshandbones.com Baynes: Medical Biochemistry

Prehepatic jaundice

- excessive load of bilirubin
- increased supply
 - increased amount in the gut
- mostly due to excessive destruction of red blood cells
- mild jaundice
- exceeding of conjugating capacity
 - unconjugated bilirubin is elevated
- urobilinogen in urine
- bilirubin is absent in urine
- hypercholic stool

(Intra)hepatic jaundice

- caused by disorders that affect liver
 - disturbed ability of the liver to remove bilirubin from the blood or conjugate it
 - disintegration of hepatocytes and release of bilirubin into the circulation
- conjugated and/or unconjugated levels may be elevated
 - depends on type of disorder
- urobilinogen and bilirubin are both in urine
- liver damage
 - hepatitis, cirrhosis, drugs, chemicals
- hereditary hyperbilirubinemias
- damage of liver architecture
 - communication between liver and bile capillaries
- hypocholic stool
 - lower production of bilirubin

Hereditary disorders of bilirubin metabolism

	Syndrome					
PARAMETER	GILBERT'S	CRIGLER-NAJJAR TYPE I	CRIGLER-NAJJAR TYPE II	DUBIN-JOHNSON	ROTOR'S	
Incidence Gene affected Metabolic defect	6%-12% UGT1A1 ↓Bilirubin conjugation	Very rare UGT1A1 No bilirubin conjugation	Uncommon UGT1A1 ↓↓Bilirubin conjugation	Uncommon MRP2 Impaired canalicular export of conjugated bilirubin	Rare Unknown Impaired canalicular export of conjugated bilirubin	
Plasma bilirubin (mg/dL)	≤3 in absence of fasting or hemolysis, almost all unconjugated	Usually >20 (range, 17-50), all unconjugated	Usually <20 (range, 6-45), almost all unconjugated	Usually <7, about half conjugated	Usually <7, about half conjugated	
Liver histology	Usually normal, occasional Tlipofuscin	Normal	Normal	Coarse pigment in centrilobular hepatocytes	Normal	
Other distinguishing features	Bilirubin concentration with phenobarbital	No response to phenobarbital	↓Bilirubin concentration with phenobarbital	TBilirubin concentration with estrogens; TTurinary coproporphyrin I/III ratio; slow BSP elimination kinetics with secondary rise	Mild Turinary coproporphyrin I/III ratio; very slow BSP* elimination kinetics without secondary rise	
Prognosis	Normal	Death in infancy if untreated	Usually normal	Normal	Normal	
Treatment	None	Phototherapy as a bridge to liver transplantation	Phenobarbital for 11bilirubin concentration	Avoid estrogens	None available	

Gilbert's syndrome

- genetically determined disorder
 - autosomal recessive
 - mutations in the promoter of UDPGT gene
 - decreease of enzyme activity by 70 %
 - responds to phenobarbital
- common
 - 5 10 % prevalence
 - more common in males
- benign
 - lifelong hyperbilirubinemia
 - Up to 100 μmol/l

- without liver disease or hemolysis
- manifestation during puberty
- icterus commonly insignificant

 $M \vdash D$

- may worsen with
 - stress
 - fasting
 - sleep deprivation
 - dehydration
 - illness (flu)
- requires no treatment

Posthepatic (cholestatic) jaundice

- bile flow is obstructed between the liver and the intestine
- cholestasis
 - intrahepatic failure inside the liver
 - extrahepatic obstruction of the large bile ducts
 - strictures of the bile ducts, gallstones, tumors of the bile duct
- increased conjugated bilirubin
- accumulation of bile pigment in the liver common to all types of cholestasis

- if the obstruction is complete
 - only bilirubin is found in urine
- acholic stool, urobilinogen is absent in urine

Neonatal hyperbilirubinemia

- physiological neonatal hyperbilirubinemia (icterus neonatorum)
 - increased erythrocytes destruction
 - immature liver conjugation and transport systems
 - increased bilirubin absorption and its lowered binding to albumin
 - unconjugated hyperbilirubinemia
 - peak in first five days, in half newborns
- kernicterus
 - in preterm infants, with hemolytic anemia and with neonatal hepatitis
 - considerably increased plasmatic bilirubin level
 - passes through the hematoencephalic barrier, deposits and damages basal ganglia

 $M \in D$

Phototherapy

Bilirubin metabolism during phototherapy

Protective effect of hemeoxygenase

- cardiovascular system
 - inhibition of thrombocytes aggregation
 - smooth muscle relaxation
- inflammation
 - 个 IL-10
 - \downarrow TNF- α a IL-1 β
- cell proliferation
 - cyclins
 - direct anti-apoptotic effect
- metabolism
 - \uparrow insulin secretion
- smokers
 - higher CO in the blood

 $M \vdash I$

Animal experiment – part I

- the aim of the practical is to
 - prepare a model of obstructive jaundice

• part l

• observe changes of bilirubin metabolism

• part II

- procedure part I
 - general anesthesia
 - laparotomy
 - ligature of ductus choledochus

Practical part II

Practical part II - procedure

- one week after ligature of ductus choledochus
- general anaesthesia, weighing of the animal
- observation of changes in animal coloration
- laparotomy
- urinary bladder puncture
 - test strips presence of bilirubin and urobilinogen
- heart puncture, taking of blood and liver
 - measurement of bilirubin concentration in the serum

• weighing of the liver

Bilirubin measurement

- van den Bergh reaction
 - bilirubin reacts with sulphanilic acid to produce purple coloured azo bilirubin
 - photometric measurement
- conjugated bilirubin reacts fast
- unconjugated reacts slowly
 - acceleration by methanol
 - releases bilirubin from albumin
- (pre)analytic phase
 - prevent hemolysis
 - protect from sunlight

