MUNI MED

Pathophysiology of gastrointestinal tract pt. 1, upper GIT

Jaromír Gumulec

The GIT

- 1- esophagus
- 2- peritoneal cavity
- 3- stomach (1.5l)
- 4- gastroesophageal junction
- 5- pylorus
- 6- small intestine (4.5 6m)
 - 7- duodenum
 - 8- jejunum
 - 9- ileum
- 10- ileocoecal valve
- 11- large intestine
 - ascendent
 - transversal
 - descendent colon
 - rectum + anus

MUNI MED

Head and neck squamous cell cancer

Etiology: tombacco, alcohol, HPV, UV light, poor oral hygiene, exposure environmental polutants

Head and neck squamous cell cancer

Pathogenesis:

- Initiation: Exposure to carcinogens or oncogenic viruses (e.g., HPV) leads to genetic alterations (mutations, deletions, amplifications)
- Promotion: Proliferation of initiated cells driven by continued exposure of carcinogens.
- Progression: additional genetic alterations, leading to invasive carcinoma.

Molecular Alterations:

- TP53 mutations: Commonly observed in HNSCC, associated with resistance to apoptosis and poor prognosis.
- HPV infection: Integration of HPV DNA into host genome, leading to overexpression of viral oncoproteins (e.g., E6, E7), inactivation of tumor suppressor genes (e.g., p53, Rb), and promotion of cellular proliferation.
- EGFR (epidermal growth factor receptor) overexpression: Associated with tumor proliferation, angiogenesis, and resistance to therapy

EGFR in head and necjsquamous cell cancer

Impact on Tumor Behavior:

- Proliferation: EGFR signaling stimulates cell proliferation and tumor growth.
- Survival: Enhances cell survival by inhibiting apoptosis Invasion and Metastasis:

Clinical Implications:

5

- Prognostic Marker: Higher EGFR expression associated with poorer prognosis
- Therapeutic Target: EGFR inhibitors (e.g., cetuximab) used in targeted therapy
- Resistance Mechanisms: Development of resistance to EGFR inhibitors through HER2, MET or mutations in EGFR itself.

Esophagus - anatomy

- Upper sphincter (cricopharyngeal muscle)
- Upper 2/3 skeletal muscle, squamous epithelium
- Lower 1/3 smooth muscle
- Lower sphincter (LES)
- Cylindrical epithelium in the terminal part

MED

Esophageal diverticula

Weakness in the esophageal wall leading to outpouching formation

- true diverticula (traction) include muscular layer
- pseudodiverticula only mucous layer

Localization

- **Zenker's Diverticulum**: Located in the posterior hypopharyngeal wall, just above the upper esophageal sphincter.
- **Epiphrenic Diverticulum**: Arises in the distal esophagus, typically just above the lower esophageal sphincter.

Factors contributing to the development:

- Zenker's Diverticulum: Dysfunction of the **cricopharyngeal muscle** (upper esophageal sphincter dysfunction) leads to **increased pressure in the hypopharynx during swallowing, causing mucosal herniation**.
- Epiphrenic Diverticulum: Associated with esophageal motility disorders such as achalasia or diffuse esophageal spasm, leading to increased intraluminal pressures in the distal esophagus.

Esophageal diverticula

Factors contributing to the development:

- Increased intraesophageal pressure
- Dysfunction of the esophageal sphincters
- Structural abnormalities
- Motor disorders (e.g., achalasia)

Pathophysiology:

- Result of mediastinal or periesophageal inflammation or fibrosis
- Traction on the esophageal wall leads to outpouching

Clinical features and complications:

- Often asymptomatic
- Dysphagia if large enough to obstruct the esophageal lumen
- Diverticulitis: Inflammation or infection of diverticula, usually resulting from fecal stasis and microperforation of diverticular wall.

Dysphagia

Difficulty swallowing, a common symptom in esophageal diverticulaMechanisms:

- Mechanical obstruction caused by the diverticulum
- Functional impairment due to associated motility disorders

Functional

- Inflammation in gastroesophageal reflux
- Sclerodermia
- Neuropathy (e.g. in diabetes)
- Amyotrophic lateral sclerosis
- Achalasia

Obstructive

Tumours Strictures Peptic ulcers

> MUNI MED

Esophageal achalasia

The lower sphincter is incapable of relaxation This leads into esophageal **dilatation** and **loss of peristaltic** movements

- The primary cause is the **disorder of myenteric plexus** (plexus Auerbachi), which produces **NO**
- NO acts as a neurotransmitter, leading to relaxation of the LES

Most often, it is caused by autoimune destruction

Complications: Esophageal dilation, aspiration pneumonia.

Hiatal hernias

•Weakness in Diaphragmatic Structures:

•phrenoesophageal ligament and muscular diaphragmatic crura, allowing the stomach to herniate through the esophageal hiatus.

 Increased Intra-abdominal Pressure: (obesity, pregnancy, chronic cough, or heavy lifting)

•Aging: Age-related changes in connective tissue

sliding

Lower esophageal sphincter and upper part of stomach slides into thoracic cavity

Low external pressure in the thoracic cavity leads into the loss of function of LES and gastroesophageal reflux

paraesophageal

Part of stomach's fundus is squeezed into thoracic cavity paralelly with esophagus This can lead into its incarceration or strangulation with necrosis (lifethreatening) Mostly, it manifests by pain and vomiting

Hiatal hernias – risk factors, complications

- Wide hiatus
- Obesity
- High intraabdominal pressure
- Gravidity

Complications:

- •Gastroesophageal Reflux Disease
- Esophagitis: Barrett's esophagusBleeding

Gastroesophageal reflux disease (GERD)

Retrograde movement of gastric juice = Loss of antireflux barrier

Pathophysiology:

- Incompetent lower esophageal sphincter (LES) allowing retrograde flow of gastric contents.
- Impaired esophageal clearance mechanisms.
- Factors contributing to LES dysfunction:
 - Hiatal hernia
 - Obesity
 - Smoking
 - Certain medications (e.g., anticholinergics, calcium channel blockers)

MUNI MED

GERD – symptoms and complications

Clinical Features:

- Heartburn: Retrosternal burning sensation, often exacerbated by lying down or after meals.
- Regurgitation: Sour or bitter taste in the mouth due to refluxed gastric contents.
- Dysphagia: Sensation of difficulty swallowing, especially in severe cases.

Complications:

- Esophagitis: Inflammation of the esophageal mucosa.
- Barrett's esophagus: Metaplastic change in the esophageal epithelium, predisposing to esophageal adenocarcinoma.

Barrett's esophagus

metaplastic change in the esophageal epithelium, where normal **squamous epithelium is replaced by columnar epithelium** containing goblet cells.

Causes

- GERD
- Hiathal hernia
- Genetic factors
- Lifestyle (obesity, smoking), age, male gender, NSAID overuse

Barrett's esophagus

Mechanism

Activation of signaling pathways involved in epithelial cell differentiation and proliferation
Wnt/β-catenin, Notch, and Hedgehog signaling, contributes to the development

and maintenance of metaplasia.

Complications:

Esophageal Adenocarcinoma (EAC) (not Esophageal Squamous Cell Carcinoma!)
Dysplasia:

Gastroesophageal Reflux Disease (GERD)

Esophageal varices

Definition: dilated, tortuous veins located in the submucosa of the esophagus, typically as a result of portal hypertension.

Pathophysiology

- Portal hypertension from liver cirrhosis.
- Collateral vessels form, causing varices.
- Varices prone to rupture, leading to bleeding.

Causes of Portal Hypertension:

- Liver Cirrhosis: Main cause.
- Portal Vein Thrombosis.
- Budd-Chiari Syndrome (hepatic venous outflow obstruction).

Esophageal varices - complications

Diagnosis:

- Upper endoscopy.
- Imaging: Doppler ultrasound, CT, MRI.
- Liver function tests.

Complications:

- Variceal hemorrhage.
- Hypovolemic shock.
- Hepatic encephalopathy.

Stomach physiology

- Motor functions of the stomach
 - storage
 - mixing and propulsion
 - emptying

Secretions

- parietal cells HCl, intrinsic factor
- chief cells enzymes (pepsinogen, gastric lipase)
- surface cells mucous, sodium bicarbonate

MUNT

MED

Parietal cell

•Secretion of Hydrochloric Acid (HCI):

- Activated by histamine, gastrin, and acetylcholine.
- Lowers pH of gastric contents for optimal enzymatic activity and antimicrobial defense.
- •Secretion of Intrinsic Factor:
 - Essential for absorption of vitamin B12 in the ileum.
 - Deficiency leads to pernicious anemia.

Chief cell

•Secretion of Pepsinogen:

- Inactive precursor of pepsin, a proteolytic enzyme.
- Activated to pepsin by low pH in the stomach.
- •Contribution to Protein Digestion:
 - Breaks down dietary proteins into peptides and amino acids.

Mucous neck cell

Production of Mucus and bicarbonate: Forms protective layer over gastric mucosa.
Prevents self-digestion by gastric acid and pepsin.

•Facilitates smooth passage of food through stomach.

Other cell types

• Enterochromaffin-like (ECL) Cells:

- Secretion of Histamine:
 - Acts as a paracrine signaling molecule to stimulate parietal cells.
 - Potentiates secretion of HCI in response to gastrin and acetylcholine.

• G Cells (Gastric Cells):

- Secretion of Gastrin:
 - Stimulates acid secretion by parietal cells.
 - Promotes gastric motility and emptying.
 - Regulated by luminal pH and presence of food in stomach.
- D Cells:
 - Secretion of Somatostatin:
 - Inhibits acid secretion by parietal cells.
 - Acts as a negative feedback regulator of gastric acid secretion.

MUNI MED

Phases of gastric secretion regulation

Phase	Trigger	Mechanism	Contribution to Secretion
Cephalic Phase	Smell, taste, sight, thought of food	Vagus nerve (ACh) stimulates parietal cells, G cells	~30% of total secretion
Gastric Phase	Food enters stomach (distension, peptides, pH change)	Gastrin (G cells), vagus nerve (ACh), histamine (ECL cells)	~60% of total secretion
Intestinal Phase	Chyme enters duodenum	Enterogastric reflex (inhibitory), secretin, CCK, GIP	~10% of secretion, mainly inhibitory

Neural Regulation of Gastric Secretion

•Vagus nerve (parasympathetic system) plays a major role:

- Stimulates parietal cells (HCl secretion).
- Stimulates **G cells** (gastrin release).
- Stimulates chief cells (pepsinogen release).
- Increases mucus production.
- •Local enteric nervous system (ENS):
 - Controls peristalsis, secretion, and feedback inhibition.

Neurotransmitters Involved

24

Neurotransmitter	Effect	
Acetylcholine (ACh)	Stimulates parietal cells , G cells , and ECL cells (histamine release)	
Gastrin-releasing peptide (GRP)	Stimulates G cells (gastrin release)	
VIP (Vasoactive Intestinal Peptide)	Inhibits gastric secretion, stimulates bicarbonate secretion 👖 🛽 👖	
Somatostatin (from D cells)	Inhibits gastrin, parietal cells, and histamine release M E D	

Hormonal Regulation

Gastrin (Key Stimulatory Hormone):

- Secreted by: G cells (in the antrum of the stomach).
- Stimulus:
 - Presence of **peptides/amino acids** in the stomach.
 - Gastric distension.
 - Vagal stimulation (via GRP).
- Effects:
 - Stimulates **parietal cells** $\rightarrow \uparrow$ **HCI** secretion.
 - Stimulates chief cells $\rightarrow \uparrow$ pepsinogen secretion.
 - Stimulates **ECL cells** → ↑ **histamine**, which further stimulates acid secretion.
 - Enhances gastric motility.

Histamine (Paracrine Regulation)

- Secreted by: Enterochromaffin-like (ECL) cells.
 - Stimulus: Gastrin and vagal stimulation.
 - Effect: Binds H₂ receptors on parietal cells → potentiates acid secretion.
 - Clinical relevance: H₂ blockers (e.g., ranitidine) reduce acid secretion

25

Hydrochloric acid secretion in parietal cells

Stimulation: Triggered by various stimuli including histamine, gastrin, and acetylcholine.
Activation of H+/K+ ATPase Pump:

- Proton pump located on the apical membrane of parietal cells.
- Exchanges cytoplasmic K+ for luminal H+ ions, generating an electrochemical gradient.

•Secretion of HCI:

- H+ ions are actively pumped into the stomach lumen.
- CI- ions follow passively via anion channels, forming HCI.

•Acidification of Gastric Contents:

 Lowers pH to around 1-2, creating an acidic environment optimal for digestion and microbial defense.

MUNI MED

Somatostatin : Negative Regulation of HCI

- **key inhibitory regulator** of gastric acid secretion
- Released by D cells in response to low luminal pH and inhibits acid secretion by parietal cells.

Feedback loop helps maintain gastric pH balance and prevent excessive acid production.

- Release Stimuli:
 - Low pH (acidic conditions, pH <3 in stomach)
 → Direct stimulation of D cells.
 - Secretin (from S cells in duodenum) → Enhances somatostatin release.
 - CCK (from I cells in duodenum) → Also promotes somatostatin release.
 - Vagal stimulation (ACh, via M3 receptors) inhibits somatostatin (during the cephalic and gastric phases).

 $M \in D$

Pathology

Pathophysiology:

- **Peptic Ulcer Disease** (PUD): Erosion of gastric or duodenal mucosa due to imbalance between protective factors (mucus, bicarbonate) and damaging factors (acid, pepsin).
- Gastritis: Inflammation of gastric mucosa, often due to infection (Helicobacter pylori), NSAID use, or alcohol abuse.
- **Gastric Cancer**: Malignant tumor arising from gastric epithelium, often associated with chronic gastritis, H. pylori infection, or genetic predisposition.
- Zollinger-Ellison syndrome
- Gastroparesis
- Common Symptoms:
 - **Dyspepsia**: Epigastric discomfort, bloating, early satiety.
 - Hematemesis: Vomiting of blood, indicative of gastrointestinal bleeding.
 - Melena: Dark, tarry stools due to digested blood.
 - Nausea, vomiting, weight loss.

MUNI MED

Gastritis

Inflammation of the gastric mucosa, characterized by mucosal injury and infiltration of

inflammatory cells.

- Acute Gastritis:
 - Sudden onset, often due to irritants such as NSAIDs, alcohol, or infectious agents (e.g., H. pylori).

– Chronic Gastritis:

- Persistent inflammation, typically associated with H. pylori infection, autoimmune conditions (e.g., autoimmune gastritis), or long-term use of NSAIDs.
- Etiology:
 - Helicobacter pylori (H. pylori) infection: Most common cause of chronic gastritis, implicated in peptic ulcer disease and gastric cancer.
 - **NSAID Use**: Direct mucosal injury leading to erosions and inflammation.
 - Alcohol: Disruption of mucosal barrier and stimulation of acid secretion.
 - Autoimmune Disorders: Antibodies target gastric mucosal cells, leading to chronic inflammation (e.g., autoimmune gastritis).
- Severe inless

29

MUNI MED

Acute Gastritis mechnaism

Etiology:

- Helicobacter pylori (H. pylori) infection: Most common cause of chronic gastritis, implicated in peptic ulcer disease and gastric cancer.
- **NSAID Use**: Inhibition of prostaglandins, Direct mucosal injury leading to erosions and inflammation.
- Alcohol: Disruption of mucosal barrier and stimulation of acid secretion.
- Severe inless
- Disruption of **mucosal barrier** \rightarrow acid-induced injury \rightarrow inflammation.
- **Symptoms**: Epigastric pain, nausea, vomiting, GI bleeding (if severe).

Gastritis mechnaism

•Activation:

- H. pylori: Release of virulence factors (e.g., cytotoxin-associated gene A, CagA) causing mucosal damage.
- NSAIDs/Alcohol: Direct injury to gastric mucosa, disrupting barrier function.

•Inflammatory Response:

- **Recruitment of immune cells** (neutrophils, lymphocytes) to the gastric mucosa.
- Release of pro-inflammatory cytokines (e.g., interleukin-1β, tumor necrosis factor-α).

•Mucosal Damage:

- Disruption of epithelial integrity, erosion of gastric mucosa.
- Activation of inflammatory pathways, amplifying tissue injury.

•Consequences:

- Chronic Inflammation: Persistence of inflammatory
- Ulcer Formation
- Carcinogenesis: Chronic inflammation-associated

Gastritis mechnaism

- Type A (Autoimmune metaplastic atrophic gastritis):
 - Pathophysiology: Autoantibodies against parietal cells & intrinsic factor → achlorhydria, pernicious anemia (B12 deficiency).
 - Associations: Increased risk of gastric cancer.
- Type B (H. pylori-associated gastritis):
 - Pathophysiology: H. pylori colonizes antrum → inflammation, increased gastrin → increased acid secretion → risk of peptic ulcer disease.
 - Associations: Can progress to MALT lymphoma, gastric adenocarcinoma.

H Pylori

- Gram-negative, spiral-shaped, microaerophilic bacterium
- Resides in the gastric mucosa, primarily in the antrum of the stomach
- 50-60% of the global population infected, but only some develop clinical disease
- Adherence
- Colonization
- Inflammatory Response

MUNI Med

Helicobacter pylori

•Urease Production:

• H. pylori converts urea to NH3+CO2, buffering gastric acid. •Movement:

• Flagella enable motility, facilitating penetration of mucus layer. •Adhesins:

- BabA, SabA, AlpA/B: Bind to gastric epithelial cells, facilitating colonization.
- •Cytotoxin-Associated Gene A (CagA):
 - Injected via Type IV Secretion System (T4SS).
 - Phosphorylated CagA alters host cell signaling, contributing to gastric carcinogenesis.
- •Vacuolating Cytotoxin A (VacA):
 - Forms pores, causing vacuolation and cellular damage.
 - Induces apoptosis and modulates immune response.
- •Gamma-Glutamyl Transpeptidase (GGT):
 - Generates reactive oxygen species, promoting oxidative stress.
 - Impairs host immune response and mucosal integrity.
- •Outer Inflammatory Protein A (OipA):
 - Induces inflammation and enhances adherence.

Inajor viruience and colonization lactors

Figure 1 Holicobactor pulari major virulance and colonization factors

H Pylori

Induction of Chronic Inflammation

• H. pylori triggers an immune response, but evades clearance.

Inflammation leads to:

- Chronic gastritis (lymphocyte infiltration, epithelial damage).
- Increased gastrin secretion \rightarrow acid hypersecretion (\rightarrow duodenal ulcers).
- Metaplasia & dysplasia \rightarrow potential progression to gastric adenocarcinoma.
- Diagnostic Tests:
 - Stool antigen test (detects H. pylori antigens).
 - Endoscopic biopsy with histology or urease test.
 - Urea breath test (detects CO₂ from urease activity).

Peptic ulcer

 Mucosal defect reaching deeper than muscularis mucosae layer, localized in areas exposed to acid-pepsin secretions.

– Causes:

- Helicobacter pylori (H. pylori) infection
- NSAIDs Disrupt mucosal integrity, inhibit prostaglandin synthesis, increasing susceptibility to injury.
- Excessive alcohol consumption, smoking, stress, and genetic predisposition.
- Most Common Locations:
 - Gastric ulcers → Lesser curvature of the stomach (near the antrum).
 - Duodenal ulcers \rightarrow First part of the duodenum.

Erosion

Penetration of only the superficial layer

Pathological anatomy

Diagnosis:

•Upper Endoscopy: Direct visualization of ulcers, biopsy for H. pylori testing and histological examination.

- •H. pylori Testing: Serology, urea breath test, stool antigen test.
- •Imaging Studies: Upper GI series, CT scan, MRI, to assess ulcer size and complications.

Stomach vs. Duodenal Ulcers Differences

Feature	Gastric Ulcers (Stomach)	Duodenal Ulcers
Location	Lesser curvature of the stomach (antrum)	First portion of the duodenum
Primary Cause	↓ Mucosal protection (weakened barrier)	↑ Acid secretion
H. pylori association	~70% of cases	>90% of cases
Gastrin levels	Normal or decreased	Increased (due to reduced acid inhibition)
Gastric acid secretion	Normal or low (mucosal damage is primary issue)	↑ Increased (H. pylori affects inhibitory feedback)
Pain Pattern	Worsens with food (acid secretion directly irritates ulcer)	Improves with food (bicarbonate- rich secretions neutralize acid), worsens 2-3 hours later or at night
Cancer Risk	Higher (gastric adenocarcinoma risk)	Lower risk of malignancy
Complications	Bleeding (gastric artery erosion), perforation, gastric outlet obstruction	Perforation (into pancreas), bleeding (gastroduodenal artery erosion)

Complications of peptic ulcer

Complications:

- **Bleeding**: Major complication, requires urgent medical attention and may necessitate endoscopic hemostasis or surgery.
- Perforation: Ulcer penetration through the gastric wall, leading to peritonitis and requiring emergency surgery.
- Gastric Outlet Obstruction: Scar tissue formation or edema may obstruct gastric emptying, requiring endoscopic dilation or surgical intervention.

Treatment

- Eradication of H. pylori: Antibiotics (e.g., clarithromycin, amoxicillin) with proton pump inhibitors (PPIs).
- Acid Suppression: PPIs or H2-receptor antagonists to reduce acid secretion and promote ulcer healing.
- NSAID Use: Discontinue or reduce dosage, consider alternative medications or gastroprotective agents.
- Lifestyle Modifications: Smoking cessation, moderation of alcohol intake, stress management.

MUNI MED

Treatment

- Histamine Receptor Antagonists (H2 Blockers):
 - Examples: Ranitidine, Cimetidine, Famotidine.
 - Mechanism: Block histamine receptors (H2 receptors) on parietal cells, reducing gastric acid secretion.
- Proton Pump Inhibitors (PPIs):
 - Examples: Omeprazole, Esomeprazole, Lansoprazole.
 - Mechanism: Irreversibly inhibit the H+/K+ ATPase pump on parietal cells, preventing acid secretion.

• Antacids:

- Examples: Aluminum hydroxide, Magnesium hydroxide, Calcil carbonate.
- Mechanism: Neutralize gastric acid, providing rapid but shortterm relief from ulcer symptoms.
- Result: Temporary reduction in acidity and symptomatic relief, but not effective for long-term ulcer management.

MED

Stomach vs duodenal ulcers

	Gastric	Duodenum
Causes	H. pylori infection. NSAID use. Excessive alcohol consumption. Smoking.	H. pylori infection NSAID use. Hypersecretory states (e.g., Zollinger-Ellison syndrome).
Clinical presentation	Epigastric pain worsened by meals. Nausea and vomiting. Hematemesis or melena.	Epigastric pain relieved by meals (hunger pain). Nighttime awakening due to pain. Hematemesis or melena

43 Zápatí prezentace

Gastric Cancer

• Types:

- Adenocarcinoma (most common).
- MALT lymphoma (associated with H. pylori).

Risk Factors:

- H. pylori (chronic inflammation \rightarrow atrophic gastritis \rightarrow metaplasia \rightarrow dysplasia).
- Diet: High salt, smoked foods, nitrosamines.
- Chronic gastritis (autoimmune or H. pylori-related).
- Genetic syndromes (e.g., Lynch syndrome).

Clinical Features:

- Weight loss, early satiety, epigastric pain.
- Acanthosis nigricans (paraneoplastic sign).
- Virchow's node (supraclavicular),

Gastroparesis

 Definition: Delayed gastric emptying without mechanical obstruction.

Causes:

- Diabetes mellitus (autonomic neuropathy).
- Vagal nerve damage (post-surgical, idiopathic).
- Medications (e.g., opioids, anticholinergics).

Symptoms:

• Nausea, bloating, early satiety, vomiting undigested food.

• Diagnosis:

Gastric emptying scintigraphy.

• Treatment:

Dietary modifications, prokinetic agents (metoclopramide, erythromycin).
 Zápatí prezentace

Zollinger-Ellison Syndrome

Pathophysiology:

- Gastrin-secreting tumor (gastrinoma) → excessive acid production.
- Leads to multiple peptic ulcers, diarrhea, acid-related complications.

Diagnosis:

- Elevated serum gastrin levels.
- Secretin stimulation test (gastrin remains elevated).

• Treatment:

- High-dose proton pump inhibitors (PPIs).
- Surgical removal if localized.