Ischemic heart disease

Michaela Králíková, MD Department of Biochemistry Faculty of Medicine Masaryk University

MYOCARDIAL ISCHEMIA

deprivation of oxygen to the myocardium accompanied by inadequate removal of metabolites secondary to decreased perfusion

<u>RISK FACTORS OF MYOCARDIAL</u> ISCHEMIA AND ATHEROSCLEROSIS

- <u>CLASSIC</u>
- age (≥45 ♂, ≥55 ♀); sex (♂)
- hypertension (STK > 120)
- **D**M
- positive family anamnesis (< 55 ♂, < 45 ♀)
- LDL chol > 2.6 mmol/l
- HDL chol < 1.3 mmol/l)
- $TG \ge 1.14 \text{ mmol/l}$
- Lp(a)
- metabolic sy
- CHRI
- smoking, phys. inactivity
- left ventricle hypertrophy

- <u>NEW</u>
- hcy
- CRP and other inflammation markers
- fibrinogen
- markers of AS plaque unstability

MECHANISMS OF MYOCARDIAL ISCHEMIA

- atherosclerosis
- nonatherosclerotic coronary artery disease (inflammation, autoimmune processes)
- coronary artery spasm
- coronary trombosis (← platelet deposition)
- coronary embolism
- increased myocardial oxygen demand

<u>CLINICAL MANIFESTATIONS OF</u> <u>MYOCARDIAL ISCHEMIA</u>

- chronic: stable angina pectoris
- variant angina pectoris
- silent myocardial ischemia
- arrhythmias
- cardiac insufficiency
- acute: unstable angina pectoris
- acute myocardial infarction
 - sudden cardiac death

ACUTE MYOCARDIAL INFARCTION

acute myocardial ischemia accompanied by necrosis of a part of myocardium

• It occurs when the supply of blood to the myocardium is reduced below a critical value.

WHO diagnosis of AMI

- two of the following must be present:
- severe chest pain longer than 20 minutes (crushing chest pain perhaps radiating to the arm, back, jaw or abdomen)
- ECG changes indicative of AMI
- cardiac markers release

since 2000 new ESC / ACC (European Society of Cardiology / American College of Cardiology) definition

 increase and the following decrease of biochemical markers of myocardial necrosis + presence of 1 of the following: typical clinical symptoms ECG changes indicative of AMI

Differential diagnosis of AMI:

- another form of myocardial ischemia
- another cardiac disease
- pulmonary disease
- musculoskeletal pain
- abdominal pain (ulcers, pancreatitis, cholelithiasis etc.)
- AMI can be clinically silent, particularly in elderly, and the ECG changes may not always be typical (previous infarction, arrhythmias, pacemaker).

Biochemical markers of AMI

- If the ischemia is present, cardiac myocytes undergo rapid and reversible changes in the cellular membrane.
- Anaerobic glycolysis becomes the major source of energy. It is not sufficient to meet the needs of ATP.
- Subsequent metabolic derangement causes functional and structural lesions of membranes and leakage of soluble molecules from the cytosol to interstitium.
- This reversible phase of ischemic injury lasts 5 hours.
- If reperfusion of the injured myocardium does not take place → irreversible necrosis follows. This is characterised by the lysis of cellular structures and a rise of structurally bound markers in plasma.
- All these substances found in blood in increased amounts are called cardiac markers.

Cardiac markers

- old markers
- enzymes
- AST
- **CK**
- CK-MB
- LD
- HBD

- new markers
- CK-MB mass
- myoglobin
- troponins

Troponin

• Togeher with actin and tropomyosin is one of proteins making up the cardiac muscle fibre. It is a complex of three polypeptides - Tn C, Tn T and Tn I.

Tn T binds the troponin complex to tropomyosin molecule Tn I is the ATPase inhibitor Tn C binds Ca²⁺

TnT and TnI are used in AMI diagnosis

- Cardiac-specific isoforms of both have been identified, beeing highly specific and sensitive for myocardial damage.
- Their greatest use is to exlude cardiac damage in a patient with chest pain: AMI is highly unlikely if there is no increase in troponins.
- The soluble fraction of Tn I and T is released together with the other cytosolic markers during the reversible phase of mycardial injury. The insoluble fraction of Tns is released after the irreversible necrosis when there is a decline in the concentration of cytosolic markers.

 cardiac-specific isoform cTnT different from TnT of cross-striated muscle cells

 I: re-expression of cTnT during regeneration and degenerative changes in skeletal muscles (dermatomyositis/polymyositis, Duchene muscular dystrophy, post-traumatical regeneration of muscles) dialysed patients (↑ cTnT in 30%)

TnT

- start of plasma level elevation in 3.5-10 h
- peak around 18 hours post infarction (free troponin present in cytosol)
- remains elevated for 2-3 weeks due to its continued release from contractile apparatus

TnI

- more specific for myocardium than TnT
- cardiac-specific isoform cTnI (31 AA) is not produced by fetal cross-striated muscle cells
- increase of cTnI in dialysed patients is less often than cTnT
- start of elevation in 3.5-10 h, peak in 9-18 h , remains elevated for 2-3 weeks

Dynamic of Tnl and TnT release at patients with AMI

TnT x TnI

- the method for assessment of TnT is identical worldwide
- a variety of kits for different methods for assessment of TnI represent the major disadvantage of its clinical use (different cut off values, difficulties in comparison)
- TnI more specific for myocardium
- TnT problem with increase interpretation in patients with renal failure and systemic degenerative processes

TnT in thrombolytic therapy monitoring

• If this therapy is succesful in restoring perfusion, there is a rapid rise in plasma cardiac markers (wash-out phenomenon). The rises are slower and last longer if occlusion remains.

• Evaluation:

- T_{max}-T₀ (time to peak): fibrinolysis start plasma value peak; < 14 h in successful reperfusion, > 14 h if occlusion remains
- c₁-c₀ (slope) or c₁/c₀ (ratio): concentration increase steepness in 1st h of therapy; c₁-c₀ > 0.2 μg/l in successful reperfusion

Myoglobin

- cytosolic protein, sensitive indicator of cardiac damage, but is non-specific, being present in skeletal muscles as well
- released early following infarction. It's the earliest AMI indicator and, as such, is useful for decisions on thrombolytic therapy.
- start of elevation 0.5 2 h, peak in 6 - 12 h, return to normal values in 14 - 18 h

AST (aspartate aminotransferase)

- 1st marker used for AMI dg
- aspartate + α -ketoglutarate \leftrightarrow oxalacetate + glutamate
- in AMI ratio AST/ALT >1
- non recommended for AMI dg

CK (creatin kinase)

- creatin + ATP ↔ creatin phosphate + ADP
- non-specific for myocardium, high activity mainly in skeletal muscles
- în physical activity, muscle injuries including i.m. injections etc.
- non recommended for AMI dg

CK

- 3 types of isoenzymes formed by 2 subunits: B (brain) and M (muscle)
- each isoenzyme is a combination of 2 subunits :
- CK-BB
 typical for brain
- CK-MB •
- CK-MM •

myocardium

- muscles and myocardium
- myocardium: 42% MB, 58% MM
- skeletal muscles: 97% MM, 3% MB
- CK-MB previously used for AMI dg

CK-MB mass

 imunochemical assessment of concentration in mg/l, no activity

 reaction with specific antibody → also determination of partly destroyed molecules without enzymatic activity → higher sensitivity than CK-MB LD (lactate dehydrogenase)

- lactate + NAD⁺ \leftrightarrow pyruvate + NADH + H⁺
- non-specific for myocardium, present in all body tissues
- non recommended for AMI dg, formerly used for late dg

LD

- 5 isoenzymes formed by 4 subunits, 2 types of subunits - H (heart) • and M (muscle) •
- isoenzyme tissue
- $LD_1 \bullet \bullet \bullet \bullet$ $LD, \bullet \bullet \bullet \bullet$
- LD₃ • •
- LD₄ • •
- $LD_5 \circ \circ \circ \circ$

- myocardium, ercs, kidneys myocardium, ercs, kidneys
- muscles, lymphatic tissue, leukocytes
- liver, muscles
- liver, muscles
- myocardium typical isoenzymes LD₁ and LD₂ are called *HBD* (2-hydroxybutyrate dehydrogenase () substrate afinity to 2-OHbutyrate than lactate)

enzyme	start of elevation	peak	return to normal values
AST	4-8 h	16-48 h	3-6 d
CK	3-6 h	16-36 h	3-5 d
LD	6-12 h	24-60 h	7-15 d

Dynamic of selected cardiac markers

Physiological or cut off values of cardiac markers

- $\leq 0.03 \, \mu g/l$ • TnT
- TnI from ≤ 0.01 to $\leq 1.5 \,\mu$ g/l (different methods)
- Mb \bigcirc
- CK-MB mass $< 5 \mu g/l$
- AST $\mathcal{J} \leq 0.7 \,\mu \text{kat/l}$ ♀ **≤ 0.6 µkat/l** ightarrow
- **∂ 0.41-3.16 μkat/l** ♀ 0.41-2.83 μkat/l • **CK**
- **CK-MB** \leq 0.4 µkat/l, or 6% of total CK ightarrow
- **3.3-7.5 μkat/l 3.3-6.3 μkat/l** • LD

≤ 3.0 µkat/l HBD ightarrow

<u>OTHER BIOCHEMICAL AND</u> HAEMATOLOGICAL TESTINGS IN AMI

- WBC
- sedimentation rate, CRP
- glycaemia
- Na, K, Cl, Ca, Mg
- cholesterol, triglycerides
- FBG
- coagulation
- acid-base balance
- urea, kreatinin
- uric acid, bilirubin
- ALT, AST, ALP, GMT, LD

OTHER MARKERS IN DG OF ACUTE CORONARY SYNDROMES

- <u>GPBB</u> (cardiac-specific BB isoenzyme of glycogen phosphorylase)
- glycogen phosphorylase enzyme of glycogenolysis
- 3 isoenzymes formed by 2 subunits, 3 types of subunits– B, M, L:
- isoenzyme BB brain and myocardium MM skeletal muscles LL liver
- very sensitive and early indicator of myocarial injury
- ↑ in 0.5-2 h, return to normal values in 2 days
- peak about 20times the amount of the physiological value

OTHER MARKERS IN DG OF ACUTE CORONY SYNDROMES

- IMA (ischemia-modified albumin)
- modified N-terminal \rightarrow modified ability of microelements binding
- very early non-specific marker ~ in serum occurs minutes after attack, peak in 1 or more h, return to normal values in 6-12 h
- <u>HFABP (heart fatty acids binding protein)</u>
- common marker as GPBB
- WBCHO (whole blood cholin)
- considering the risk of AS plaque destabilisation
- \uparrow in liver and renal failure and tumors

HO-CH₂-CH₂-N⁺-CH₃

research

Cardiac failure

fale of the heart to pump enough blood to satisfy the needs of the body

- old markers: CK and CK-MB are normal
- AST, ALT, and LD₅ are elevated as a result of liver congestion

• *new markers:* natriuretic peptides

Natriuretic peptides

hormones synthesized, stored and released by cardiomyocytes

vasorelaxation and natriuretic effects

 secretion stimulated by: atrial distension or hypertrophy, ventricle overload, myocardial ischemia, blood volume expansion, glucocorticoids, hypoxia, thyroideal dis.

ANP (atrial NP)

• 28 AA peptide with a 17 AA ring formed by a disulfide bond in the middle of the molecule

 produced, stored and released by atrial myocytes in response to: atrial distention stretching of the vessel walls sympathetic stimulation of β–rec. hypernatremia ANGT-II endothelin (vasoconsrtictor)

Physiological effects of ANP

Renal

- \downarrow Na⁺ reabsorption
- inhibits renin secretion, thereby inhibiting the RA system
- ↓ aldosterone secretion
- Cardiovascular
- inhibits maladaptive cardiac hypertrophy
- Adipose tissue
- ↑ the release of free fatty acids from adipose tissue

Tests showing elevated levels of BNP or NT-proBNP in the blood are used as a diagnosis of heart failure and may be useful to establish prognosis in heart failure, as both markers are higher in patients with worse outcome.

Both BNP and NT-proBNP have been approved as a marker for acute congestive heart failure. The plasma/serum concentrations are increased in patients with asymptomatic and symptomatic left ventricular dysfunction.

BNP (brain NP)

- originally identified in extracts of porcine brain, but in humans it is produced mainly in the cardiac ventricles
- 32 AA polypeptide secreted in response to excessive stretching of ventricular myocytes
- synthesized as pre-pro-hormone → proBNP (AA 1-108)
 cleavage → BNP (AA 77-108) and inactive NTproBNP (AA 1-76)

BNP /P

- Binds to and activates NP receptor system in a similar fashion to ANP but with 10-fold lower affinity; its biological half-life is, however, twice as long.
- Effects: ↓ in systemic vascular resistance and central venous pressure →
 ↑ in natriuresis
 ↓ in cardiac output and ↓ in blood volume renin and aldosterone synthesis inhibition
- cut off = 100 ng/l = 28.90 pmol/l
- (1 pmol/l = 3.460 ng/l; 1 ng/l = 0.289 pmol/l)

NTproBNP (N-terminal) /S

- 76 AA N-terminal fragment co-secreted with BNP
- synthesized as pre-pro-hormone → proBNP (AA 1-108) - cleavage → BNP (AA 77-108) and inactive NTproBNP (AA 1-76)

- cut off = 125 ng/l = 14.75 pmol/l
- (1 pmol/l = 8.457 ng/l; 1 ng/l = 0.1182 pmol/l)