CLINICAL BIOCHEMISTRY

Clinical laboratory diagnosis of kidney and urinary tract disorders

Nitrogen balance Energy expediture and energy supply Oxygen metabolism in the body

Clinical laboratory diagnosis of liver and biliary tract disorders

Oxygen metabolism in the body

Normal respiration depends on the combination of

ventilation

gas exchange in the lungs

- oxygen binding to hemoglobin
- cardiac output

Composition of dry atmospheric air

78%	nitrogen
21%	oxygen
0,03%	carbon dioxid
0,1%	inert gases

Oxygen gradient

pO₂ (kPa)

Inspired air21,4Arterial blood13,4Venous blood5,3

Expired air 15,4

Atmospheric pressure 101,5

The airways are divided into two zones:

the conducting zone

trachea, bronchi, terminal bronchioles

the respiratory zone (the structures in which gas exchange occurs) respiratory bronchioles, alveolar ducts and alveoli

FiO₂ Fraction of inspired oxygen

Atmospheric air0,21Arteficial ventilation usually...0,4Pure oxygen1,0

Dead space volume

alveolar-dead-space (nonperfused alveoli)

Perfusion

Perfusion is greater at the base of lungs than at the apex (upper areas)

Ventilation

is the exchange of gases between ambient air and lungs

atmospheric air

low oxygen parcial pressure

high altitude – high mountains, high flights of aircrafts **consumed oxygen** – fire in the closed space

hypoventilation

deppression of respiratory (breathing) center in brain (Morphine)
weakness of breathing muscles (energy exhausted persons)
pain during breathing (chest injury, pleuritis)

diffusion across the alveolo-capillar membrane

pulmonary aedema fibrotic process

ventilation / perfusion ratio

alveolar ventilation is approximatelly 4 l/min. cardiac output averages 5 l/min V/P ratio = 0,8

hemoglobin

concentration of total hemoglobin anemia

effective concentration of hemoglobin

oxyhemoglobin

karbonylhemoglobin methemoglobin

Oxygen dissociation curve

relation between pO2 and hemoglobin saturation

The position of the oxygen dissociation curve reflects the affinity of hemoglobin for oxygen.

Affinity is reduced by: (shift to the right)

- Increases in temperature
- Decreases in pH
- Increases in pCO2
- Increases in the erythocyte 2,3-diphosphoglycerate

Cardiac output

heart failure myocard infarction

Tissues perfusion hypovolemia shock centralization of circulation

Specimens for oxygen measurement

Arterial blood is the most suitable specimen for oxygen measur.. (arteria puncture is relative invasive)

Arterialised capillary blood from ear lobulus.

Blood drawing must be done anaerobically

Hypoxia lack of oxygen in the tissues

Lactic acid - product of anaerobic metabolism

Energy expediture and energy suply

Energy need differs - patient to patient, disease to disease, hour to hour

Calculation of basic energy expediture

Harris-Benedict equations

high (cm) waight(kg).... age(years).... sex (M/F)

1°C over 37°C..... + 10 % middle stress + 30 % severe stress + 100 %

Indirect calorimetry

Strong relationship between energy expediture and oxygen consumption

Investigation of oxygen consumption

diference between oxygen content in inspired a expired air

Indirect calorimetry

O_2 [l/min] x 1440 x 4,83 x 4,18 = kJ

Energetic equivalent [kcal/l consumed oxygen]

> glucose......5,05 kcal fat.....4,69 kcal protein.....4,49 kcal