Prosthetics II.

Fixed dentures

Fixed dentures

Cemented (fixed) on/in pilots, abutment teeth.

Inlays (inlays, onlays, overlays, partial crowns).
 Crowns
 Bridges

Rigid fillings

Manufactured in a dental lab

Direct or indirect method

- Direct method rarely
- Indirect method most common

Crown inlay

- a part of a clinical crown is replaced

Root canal inlay

 The inlay is cemented into the root canal and replaces a crown (abutment tooth – stump, <u>snag</u>)

Crown inlay

Material → Composit → Ceramics → Metal Alloys

Crown inlays

Indikations

- A big lost of dental tissues
- Big interdental spaces
- Next to the crowns and bridges made of metal alloy

Crown inlays

Contra - indication

Too small - shallow (flat) cavities 1.

- 2. High caries risk
- 3. Frontal area (metallic)

Partial crown

Retention of rigid fillings

Whitstand capability against axial forces:

Geometry of the preparation Quality of the luting material (facilitating shape)

Rau G. 1994

Angle of convergence

0° - maximum
6° - very good
15°- acceptable
20° - insuficient

Optimum 6° - 15°.

Retaining areal

Surface of contact

Rigid filling Inlay or crown (internal, outer, combined)

Stability of rigid fillings

Whitstand capability against horizontal forces

Angle of convergence Axial length contact surface

Basic rules of cavity preparation

➢ Box

> No undercuts

Light divergence of the walls (facilitating shape)

Box

Undercuts

Simple box

Facilitating form

Direct method

Indirect method

Direct method

Direct modellation in the mouth Special wax – casting wax, (special polymers) Sprue pin Investment Method of the lost wax

Direct method

Central cavities (class I., classs V.)

Root canal inlays

Indirect method

Taking of the impression Model Modellation of the casting wax, (special polymers) Sprue pin Investment Method of the lost wax

Aesthetic inlays – composite materials, ceramics

Special procedure

Indirect method always

Gates, Peeso – Largo,

Direct method

Isolation

Modellation – casting wax, heated, flowing

Sprue pin

Investment

Method of the lost wax

(burntout in the special oven)

Indirect method

Impression

Model

Modellation – casting wax, heated, flowing

Sprue pin

Investment

Method of the lost wax

(burntout in the special oven)

Model

Insulation

Modellation

Indirect method

Impression

Model

Modellation – casting wax, heated, flowing

Sprue pin

Investment

Method of the lost wax

(burntout in the special oven)