Amalgam

Preclinical Dentistry, 1st. Year Autumn Semestr L. Roubalíková

Metal-like restorative material composed of silver-tin-copper alloy and mercury.

Types of amalgam restorative materials

Low – Copper Amalgam (5% or less copper) Composition – wt%

Silver Tin Copper Zinc 63 - 70 % 26 - 28 % 2 - 5% 0 - 2%

Types of amalgam restorative materials

High – Copper Amalgam (13% - 30%) copper Composition – wt%

Silver Tin Copper Zinc

40 - 70 % 26 - 30 % 2 - 30% 0 - 2%

Particles of the alloy

Irregulary shaped (filings - lathe cut)

✓ Microsphers

✓ Combination of the two.

Particles shape

<u>High – Copper Amalgam</u> Microsphers of the same composition (unicompositional)

Mixture of irregular and spherical particles of different or the same composition (admixed)

Production of irregular particles

Metal ingrediences heated, protected from oxidation, melted and poured into a mold to form an ingot. Phases of the alloy: $Ag_3Sn - \gamma$ Cu₃Sn - ε $Cu_6Sn_5 - \eta$ $Ag_4Sn - \beta$

Production of irregular particles

Ingot cooled slowly

Ingot heated at 400° C (6 – 8 hours) (homogeneous distribution of Ag₃Sn)

Ingot cut on the lathe, particles passed trough a fine sieve and ball milled to form the proper particle size.

Aging of particles (60 - 100° C, 6 – 8 hours)

Particle size: $60 - 120 \mu m$ in length $10 - 70 \mu m$ in width $10 - 35 \mu m$ in thickness

Production of irregular particles

Molten alloy is spraying into water under high pressue

Irregulary shaped highcopper particles

Production of spherical particles

Molten alloy is spraying under high pressue of inert gas through a fine crack in a crucible into a large chamber

Diameter of the spheres: $2 - 43 \mu m$

Metal alloy is mixed with pure mercury

Trituration

Low copper amalgam

High copper amalgam

Amalgam - properties

Amalgam

Wear and pressure resistance (2mm thickness ast least)
Easy handling
Thermal and electrical conductivity
Corrosion
Bad aesthetics

Trituration

Hand mixing (obsolete)

Power driven trituration

Preparation instruments

Filling instruments

>Burnishers

Preparation instruments - power driven Burs

Diamonds

Preparation instruments - hand

Excavator

Chisel

Amalgam carrier

Amalgam carrier

Filling instruments condensors and spatulas

Condensor stamen

Condensor – stamen

Condensor and burnisher - spatula combined

Power driven condensor - stamen

Special handpiece

Burnisher - spatula Angular- trough edge trough face

Burnisher – spatula, angular three face

Ball condensor – used as a burnisher at most

Frahm Discoid Cleoid

Carver - Frahm

Carver - Sapin

Carver Discoid-cleoid

Carver: Frahm

Carver: Discoid - Cleoid

Finishing

Polishing

