Clinical Genetics

Renata Gaillyová

Clinical Genetics

- Lecture hall Clinic of pediatric infectious diseases, University Hospital Brno, Children's Hospital
- · Brno, Černopolní 22
- · Monday
- · 7,30 8045 Clinical Genetics
- · 9,00 12.30 Cytogenetics

Clinical Genetics

- · Tuesday
- · 7,30 11.00 Clinical Genetics
- 11,30-12.30 Visit on the Department of Medical Genetics, University Hospital brno, Children's Hospital. Černopolní 9, Building G, 3 floor
- (Bring a medical mantle and shoes in the laboratory, please use the changing rooms for students
- · Wednesday
- · 7,30-10.00 DNA diagnostics

Clinical genetics

- · Dept. of medical genetics
- · Genetic prevention
- · Genetic diseases
- · Patients
- · Genetic counselling
- · Chromosome abnormalities
- · AD, AR, XR inheritance, disorders
- · Multifactorial inheritance
- · Teratogenes, Environmental hazards
- · Prenatal diagnosis
- · Reproductive genetics
- · Hereditary cancer

Dept. of Medical genetics

- · Genetic ambulance genetic counselling
- · Laboratory part
- · Cytogenetic laboratories
- Prenatal cytogenetics
 Postnatal cytogenetics
 Oncocytogenetics
 Molecular cytogenetics
- · <u>Lab. for DNA and RNA analysis</u> (clinical genetics and oncogenetics)

Characteristic of Medical Genetics

- · Preventive Medicine
- · Interdisciplinary cooperation
- Information from genetics (disease, testing, posibilities)
- · Voluntary choice for patients
- · Informed agreement

Primary prevention of genetic

- Before pregnancy
- Folic acid (cca 1mg/day, 3+3 months)
- Vaccination (rubella)
- · Genetic counselling
- · Contraception, adoption
- · Donor (oocytes, sperm)
- · Pregnancy planning
- Environmental hazards (drugs, radiation, chemicals...)

Secondary prevention of genetic

- · Prenatal diagnosis
- · Prenatal screening
- · Prenatal tests
- · Genetic counselling
- Termination of pregnancy (the law in Czech Republic - end of 24. week of gestation)
- · Postnatal screening
- · Newborn screening

Genetics diseases

- · Chromosome abnormalities
- · about 0,6 -0,7%

- Monogen diseases
- about 0,36% (in 1 000 000 newborns)
 most then 90% in childhood

- Multifactorial (polygenic or complex) disorders
- · about 80%

Patients on genetic departements

- · Dead person
- · Adults
- · Pregnant women
- Fetuses
- · Children

Patients on genetic departements

- Positive family history (chromosome abnormality, congenital malformations, mental retardation, diseases...)
- Pregnant women with encrease risk for the fetus
- Infertility sterility, repeated fetal loss
- · Donors (gamets)
- · Patients with tumours

· Congenital malformations

 Suspition of mongenic hereditary diseases or inherited metabolic disorders and their families

 Suspition on congenital chromosom aberations (children with congenital malformations, abnormal face, atipical visage, pre- or postnatal growth retardation, premature birth)

- · Precocious or delayed puberty
- · Malformations of the external or internal genitalia
- · Low or high figure

Before adoption

Children or adults

- Mental retardation
- Psychomotor retardation
- · Developmental delay

Children and adults

· Gender identity disorder

Children and adults

- people with long-term exposure to environmental pollutants
- · (alcohol, cigarettes, drugs, radiation)

Children and adulds

- · patients with suspected hereditary cancer
- · patients with cancer (sporadic occurrence)

Adults

Gamete donors(preventive tests)

Adults

 Related partners
 (increased risk for hereditary disease with AR inheritance)

adults

- · Infertility
- · Repeated spontaneous abortions

 With unfavorable family history

 with adverse pregnancy history (chronic diseases with established therapies, acute disease in early pregnancy - temperature, drugs, X-rays, CT, vaccinations, toxoplasmosis, rubella, ...)

 Prenatal biochemical screening
 (Pathology results)

- Ultrasound prenatal screening pathology results
- Congenital malformations
- Risk of chromosomal aberrations in the fetus

· ??? Age of parents ??? relative indications

Genetic counselling

- · Anamnesis
- · Family history
- · Pedigree analysis
- · Examining the patient
- · Laboratory analysis
- Other examining neurology, psychology, hematology, CT, MRI ...

Mother

- Name, surname, date of birth, maiden name
- · Place of birth
- Place of birth of mothers parents
- Relationship
- · Jobs employment risks
- Addictive substances alcohol, cigarettes, medication ...

Mother

- Health problems from birth until today
- Long-term medication
- Long-term monitoring of a doctor
- Gynecological anamnesis
- The number of births, children, pregnancy, birth weight children, the health status of the children
- The number of abortions, unsuccessful pregnancies
- Unsuccessful attempt to pregnancy

Mother

- In the case of health problems, if possible, to provide medical records from the attending physician
- Long-term used drugs, how long

Father

- · Name, surname, date of birth
- · Place of birth
- · Place of birth ot hte fathers parents
- · Relationship
- · Jobs employment risks
- Addictive substances alcohol, cigarettes, drugs ...

Father

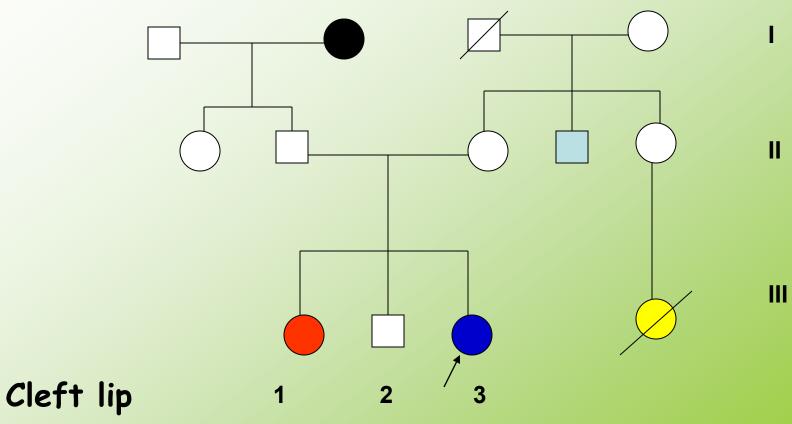
- Health problems from birth until today
- Long-term medication
- Long-term monitoring of a doctor
- Number of children from any previous partners, their health status
- The number of abortions, failed pregnancy (if any previous partner)
- Unsuccessful attempt to become pregnant in previous partner

Father

- In the case of health problems, if possible, to provide medical records from the attending physician
- Long-term used drugs, how long

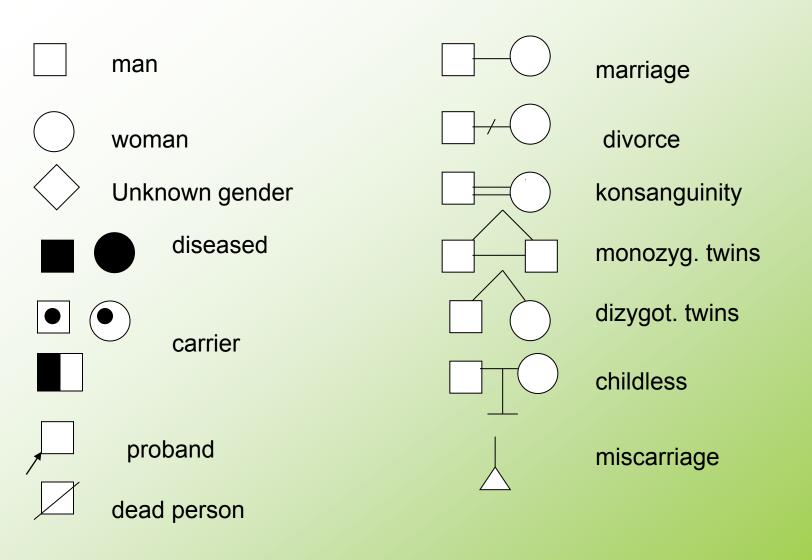
Child - Patient

- · Pregnancy
- Swelling, nausea, protein in urine, sugar in urine, high blood pressure
- · Diseases in Pregnancy
- · Drugs in Pregnancy
- Prenatal tests results
 Ultrasound, blood tests


Child

- · Birth in time, early, after the deadline?
- Complications, neonatal icterus, birth weight and length, nutrition
- The mental and motor development
- Diseases
- Monitoring of specialists
- Drugs
- · Test results

Child


- · Clinical genetic examination
- · Weight, height
- · Atypical visage
- Malformations
- · Psychological state
- · Behavior

Pedigree- our patient III/3

- - Neonatal death
 - Syndaktilie

- Epilepsy
 - Congenital heart disease

Three-generation pedigree

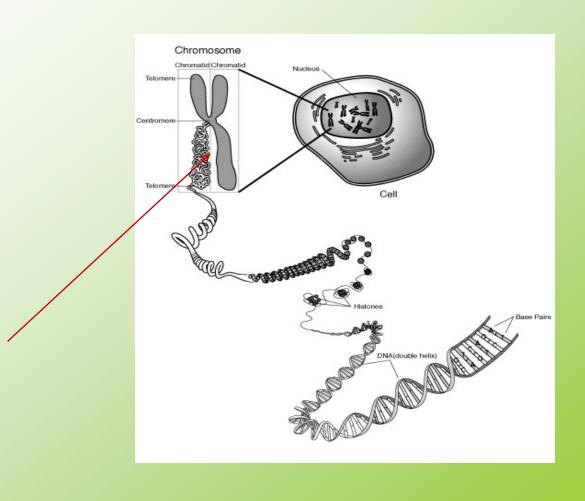
- · Patient
- Siblings
- · Children siblings
- · Parents
- · Parents siblings
- · Children of parents siblings
- · Parents parents

Clinical examination

GENOM X GENOTYP

The genome in individuals of the same type is the same Genotypes of individuals of the same species may be different

Next steps


- Recommend the laboratory genetic testing
- · Recommend other specialists if needed
- Require medical records
- · Make photodocumentation

Genetic counselling

· Specify exact diagnosis (if possible)

- · Determine genetic prognosis
- · Is the disease hereditary?
- · Type of inheritance
- · Genetic risks for other family members
- Posibilities of treatment, prenatal analysis

Chromosome abnormalities

Congenital chromosome abnormalities

- Autosomes
- · Gonosomes

- Numerous
- · Structural

- Balanced
- · Unbalanced

Populations frequency

Trisomy 21 1,5 per 1000 live

births

Trisomy 18 0,12

Trisomy 13 0,07

Klinefelter 1,5

syndrome

Turner syndrome 0,4

XYY syndrome 1,5

XXX syndrome 0,65

Chromosome abnormalities in spont. abortions

All spont. abortions	50 %
----------------------	------

Up to 12 weeks	60 %
----------------	------

Maternal age and chromosome abnormalities in AMC (per 1000)

years	+21	+18	+13	XXY	AII
35	3,9	0,5	0,2	0,5	8,7
37	6,4	1,0	0,4	0,8	12,2
40	13,3	2,8	1,1	1,8	23,0
43	27,4	7,6		4,1	45,0
45	44,2			7,0	62,0
47	70,4			11,9	96,0

Risk of Down syndrom (live births)

Maternal age (years) Risk	M	aterna	lage	(years)	Risk
---------------------------	---	--------	------	---------	------

15 1/1578

25 1/1351

35 1/384

40 1/112

45 1/28

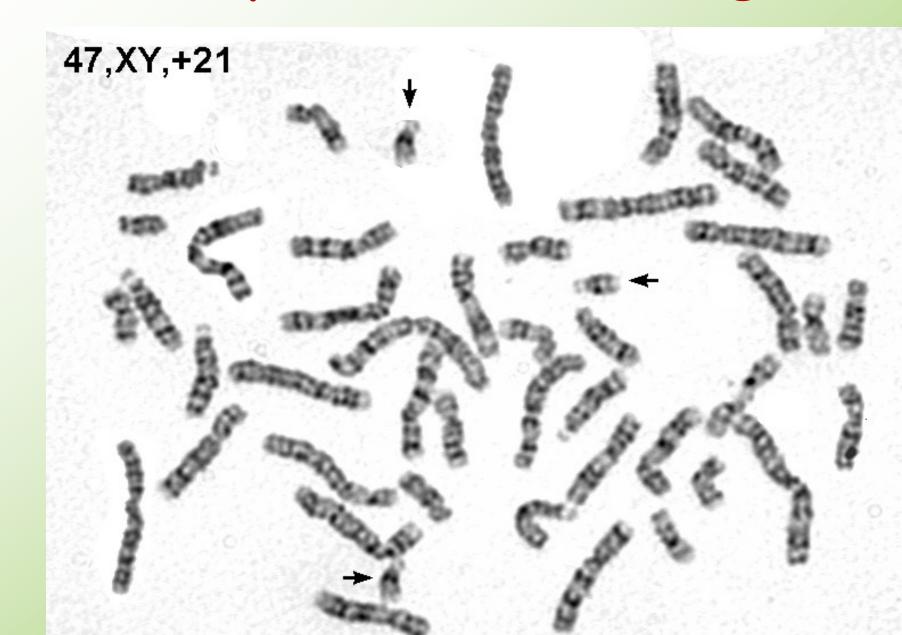
50 1/6

Happy nature

Vision and hearing disorders

Hypothyroidism

Correlation between positive stimulation and height IQ


Male sterility

Alzheimer-like symptoms in 40

Down syndrome

- 47,XX,+21 or 47,XY,+21
- · About 1/800-1000 newborns, 1/75 SA
- Hypotonia, joint laxicity, soft skin, flat face, prominent intercanthal folds, slanted palpebral fissurs, specling of the irides (Brushfield's spots), small, down set ears, small nose, protruding tongue, simian crease in the hands (about 45%), short statue, mental retardation, congenital heart disease (50%), A-V communis

Down syndrome (G-banding)

Down syndrom- prenatal diagnosis

- · I. trimester screening
- · Ultrasound 10.-12. week of. gest.
- Nuchal translucency more than 2,5-3 mm, absence of nose bone
- · PAPP-A, free-beta hCG

- · II. trimester screening
- · 16. week AFP, total hCG, uE3

 20. week - US, congenital heart disease

II. Trimester screening

- · AFP
- · hCG
- · uE3
- · Risk 1 in 250 borderline
- · Maternal age, week of gestation by US

Edwards syndrome

- · 47, XX(XY), +18
- · 1/5000-10 000 in newborns, 1/45 SA
- · gynekotropie 4:1
- SA 95%, death before 1 year mostly

 hypotrophy, atypical hands and foots, profil, prominent nose, small chin, congenital defects

Edwards syndrome

- · 1:5000
- · IUGR, hyopotrophie
- · microcephalie
- · dolichocephalie
- · Cleft palate
- · Down set ears
- · micromandibula
- · Hands, feets
- Other cong.
 malformations

Prenatal dg. +18 - II. trimester

- PAPP-A, FßhCGAFP, HCG, uE3

- · Risk 1/250 borderline
- · Ultrasonography

Patau syndrome

- \cdot 47, XX(XY), +13
- · 1/5000-10 000 in newborns, 1/90 SA
- · 95% SA
- · death before 1 year mostly

· cleft lip and palate bilateral, congenital defects (CNS, eyes, postaxial hexadaktily...)

Patauův syndrom + 13

- Microcephalie
- · Trigonocephalie
- skin defects in the hairy part calva
- congenital defects of the brain (holoprosencephalie, arinencephalie)
- · micro-anophthalmia
- Cleft lip, palate hexadactilie
- · heart defects

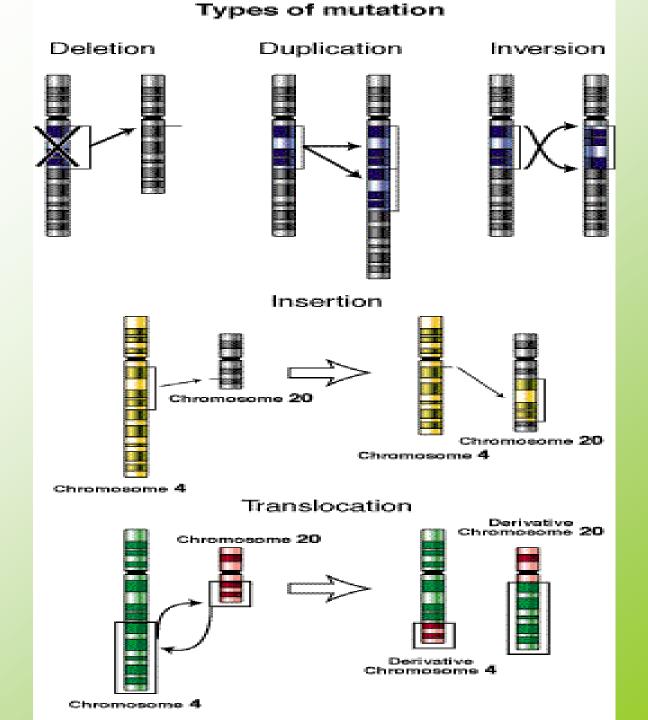
Turner syndrome

- 45,X (in about 55%), mosaicism, structural abnormalitites of X chromosome
- · 1/2500 newborn girls, min. 95% SA
- · prenat. hydrops foetus, hygroma coli
- postanatal lymphedema on foots, pterygium coli, congenital heart defect coarctation of aorta, small stature, other congenital defects, hypogenitalismus, hypergonadotropins, sterility-infertility

Turner syndrom 45,X

- · 1:2000
- · hygroma colli
- hydrops
- · Low weight in newborns
- · Lymfoedema
- · Pterygia
- · cubiti valgi
- · Aortal stenosis
- · Small statue
- · Sterility

Klinefelter syndrome


- 47,XXY
- relatively frequent 1/600-1000 liveborn males
- · tall stature
- · hypogonadism, gynekomastia
- · sterility, infertility

Others gonoseme abnormalities

- · 47,XXX
- · 47, XYY
- · 48,XXXX
- · 48,XXYY....

Structural chromosomam aberrations

- deletion or a duplication of the genetic material of any chromosome, atypical structure - side by side to get the genetic material, which there normally is not - the effect of positional
- · partial-partial deletions
- · partial trisomy
- · inversions, insertions, duplications

Syndrom Wolf-Hirshorn 46,XX(XY),4p-

- · severe mental retardation
- typical craniofacial dysmorphia hypertelorism, pear nose, carp mouth,
- · pre-and postnatal growth retardation,
- · failure to thrive
- other associated developmental defects - heart, urogenital tract ...

Wolf-Hirschhorn syndrom (46,XX,4p-)

Incidence?

IUGR

Hypotonia

Charakteristic face

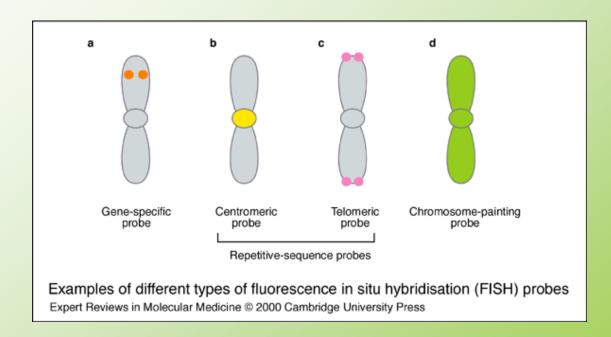
Heart defects

Hypotonie

Hypotrophie

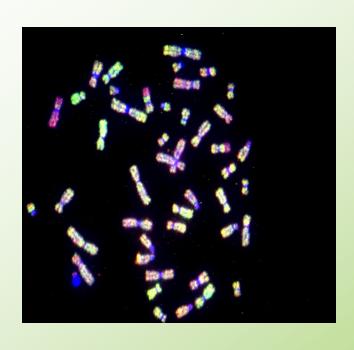
Severe mental retardation

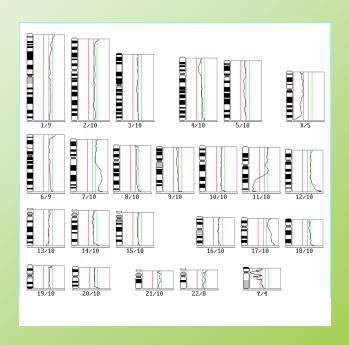
Syndrom Cri du chat 46,XX(XY),5p-

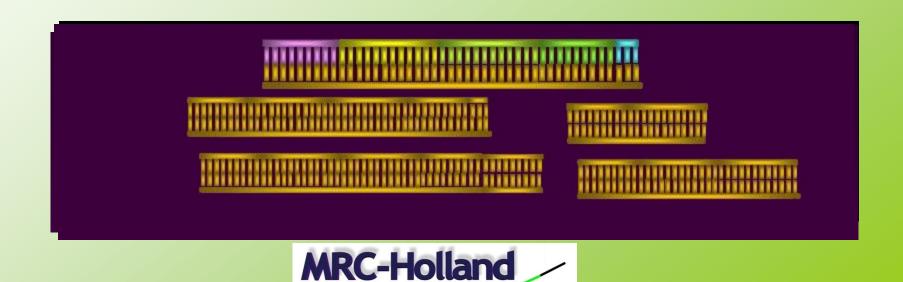

- anomalies of the larynx causes the characteristic cry of a similar feline meow (only in infancy)
- · low birth weight and length
- mental retardation, short stature, failure to thrive, small moon shaped face, the position antimongoloid eye slits, mikrocephalie
- · Other malformations and birth defects

Cri du chat 46,XX(XY),5p-

- · 1:50 000
- Typicaly cri in newborns
- · laryngomalacie
- · antimongoloid
- · epicanthi
- · hypotonie
- · hypotrofie


Mikrocytogenetic Molekular cytogenetic


- FISH (fluorescenc in situ hybridisation),
 M-FISH, SKY (spektral karyoptyping), CGH (komparativ genom hynridization), MLPA
- mikrodeletions or mikroduplications, marker chromosoms, complex rearegements, oncology oncocytogenetics, fast prenatal diagnostics ...)
- · fast methods (possible forprenatal dg)
- · metafase and intesfase examination



Komparativ genom hybridisation

MLPA Multiplex Ligation-Dependent Probe Amplification

Microdeletions

 Di George syndrome (del 22q11)

 Prader-Willi / Angelman syndrome (del15q11-13)

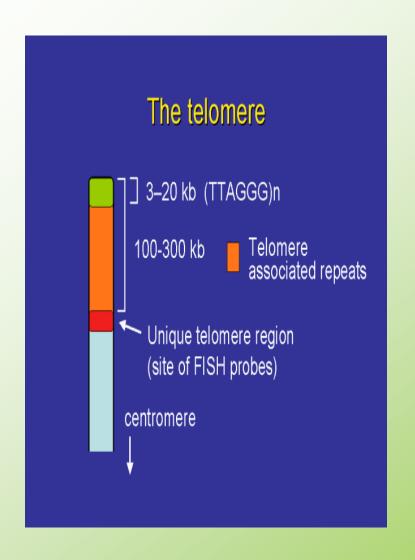
· Williams Beuren syndrome (del7q11.23)

Syndrom Di George

- Velo Kardio Facial syndrome
- · CATCH 22
- Congenital heart desease conotruncal, craniofacial dysmorfism, thymus aplasie, imunodefitient"cy, hypoparathyreoidismus

Williams - Beuren syndrom

- · del 7q11.23
- Facial dysmorfie Elfin face, congenital heart disease, aortal or pulmonal stenosis, hypokalcemie, small statue, MR, hernie,...


Prader-Willi syndrom

- · Hypotonie, hypotrofie in small children
- PMR, small statue, obesity, hyperfagie, akromikrie, hypogonadismus
- · mikrodeletion15q11-12 paternal

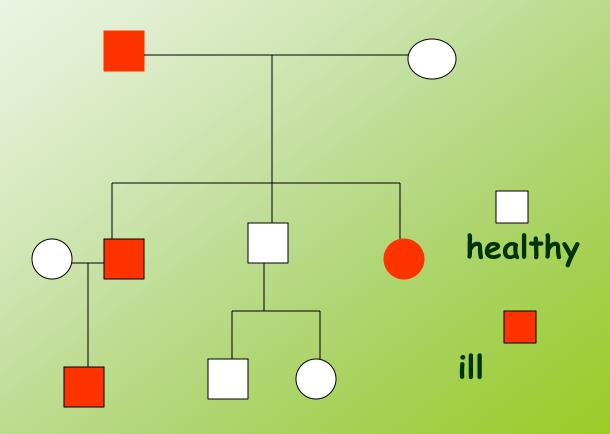
Angelman syndrom

- Severe mental retardation
- · Epilepsie
- · Laughter
- severely delayed speech development
- mikrodeletion
 15q11-12 mat

The telomere

Rearangement in about 6-8% children with mental retardation with or without congenital defect (FISH, HR-CGH, MLPA)

Mendelian inheritance


Monogenetic diseases

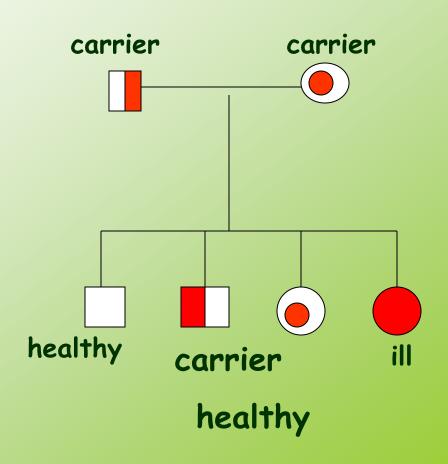
Autosomal Dominant

- · The sexes are involved equaly
- Heterozygotes are mostly affected clinically
- · risk 50% for sibs and children
- · new mutations
- · penetrance, expresivity

Pedigree AD inheritance

• the risk 50%

AD - diseases


- · Neurofibromatosis 1 and 2
- · Achondoplasia
- · Huntington disease
- · Marfan syndrome
- Myotonic dystrophy

Autosomal Recesive

- · Heterozygotes are generally unaffected clinicaly
- · The sexes are involved equaly
- An individual manifesting a recesive disorder usually has heterozygous parents
- Once a homozygote is identified, the recurence risk for other child of some parents is 25%

Pedegree - AR inheritance

•The risk for next child 25%

AR - diseases

· Cystic fibrosis (frequency of heterozygotes CR- 1/26)

· Phenylketounria (1/40)

· Congenital adrenal hyperplasia (1/40)

· Spinal muscular atrophy (1/60-80)

Cystic fibrosis

- · Localized on chromosome 7q
- Frequency of Cystic Fibrosis in the Czech
 Republic: about 1/2000 1/3000
- Frequency of heterozygots in the Czech Republic about 1/25-1/29
- About 1600 mutations in CFTR gene were identified

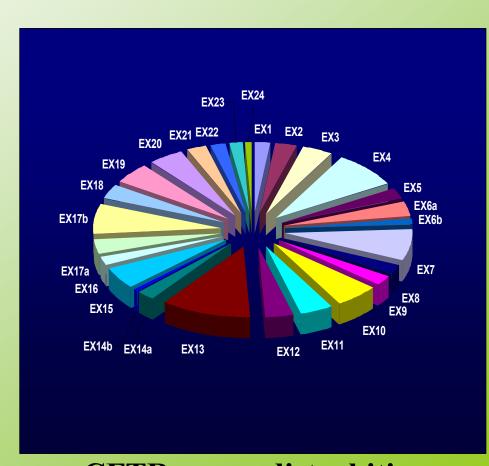
Cystic fibrosis

Respiratory tract

liver

pankreas

intestine


reproductiv failure

sweat gland

 disease affecting multiple organs

The reason for CFTR gene analysis

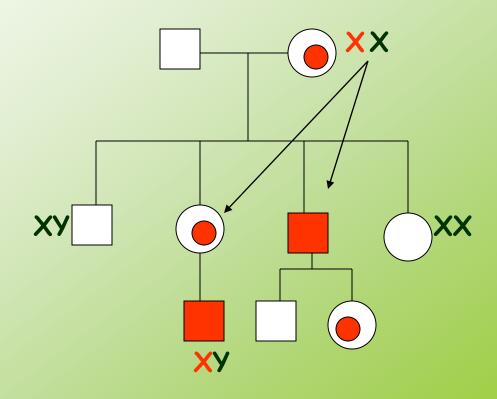
- Suspition on Cystic fibrosis in a patient
- Cystic fibrosis in the family
- Partners of hyterozygots for Cystic fibrosis
- Repeated fetal loss
- · Sterility
- Relationship of the partners
- · Others

CFTR gene - distrubitions od mutations

Most frequent CFTR mutations in Czech population

Mutation	Frequency in CR (%)
F508del	70,7
CFTRdele2,3(21kb)	6,4
G551D	3,7
N1303K	2,8
G542X	2,1
1898+1 GtoA	2,0
2143delT	1,1
R347P	0,74
W1282X	0,6

X-linked Recesive


- Females are not affected as severaly as males or are not affected
- An affected male cannot transmit the train to his sons, becose the trait is on X-chromosome, and the father must necessarily transmit his Y-chromosome to a son
- All of the daughters of an affected male must be carriers, because the only Xchromosome that the father can give to a daughter contains the mutation

X-linked Recesive

- Risk for daughters of a carrier mother
- · 50% for carrier

- · Risk for sons of carrier mother
- 50% for diseas

X- recesive inheritance

XR - diseases

· Hemophilia A and B

 Duchenne and Becker muscular dystrophy

 Fragile X chromosome - X-linked disease

Multifaktorial -polygenic inheritance Dieseases with complex heritability

Teratogens

Charakterization

 disease with multifactorial inheritance include not mendelian types of inheritance

 diseases exhibit familial aggregation, because the relatives of affected individuals more likely than unrelated people to carry diseases predisposing predisposition

Charakterization

- · in the pathogenesis of the disease play a basic role non-genetic factors
- disease is more common among close relatives and in distant relatives is becoming less frequent

Examples

- · Congenitzal heart defects (VCC) 4-8/1000
- · Cleft lip and palate (CL/P) 1/1000
- · Neural tube defects (NTD, anencefalie, spina bifida,..) 0,2-1/1000
- Pylorostenosis
- · Congenital hip dislocation
- · Diabetes mellitus most types
- · Ischemic heart desoease
- · Esential epilepsy

Common congenital defects

Congenital heart diseases

- 0,5 1% in liveborn infantsn population incidence
- · etiology not known mostly
- about 3% + chromosomal syndromes
 (+21,+13,+18, 45,X, 18q-, 4p-, del
 22q11 Di George sy)
- some mendelian syndromes associated with congenital heart disease (Holt-Oram, Williams, Noonan, Ivemark...

Congenital heart diseases prenatal diagnosis

- · For most serious congenital heart diseases
- Ultrasonography in 21. week of gestation - by specialists for prenatal kardiology

Congenital heart disease - genetic risks

condition	1 aff.	1 aff.
	sibling	parent
Ventricular septal def.	3 %	4%
Patent ductus art.	3%	4%
Atrial septal defect	2,5%	2,5%
Tetralogy of Fallot	2,5%	4%
Pulmonic stenosis	2%	3,5%
Koarctation of aorta	2%	2%

Congenital heart disease genetic risks

	Risk in %
More than two affected	50
firstdegree relatives	
Sib of isolated case	2 - 3
Second-degree relatives	1 – 2
Offsprin- affected father	2 - 3
Offsprin – affected mother	5
Two affected sibs	10

Cleft lip and palate

- · Population incidence CL 1/500-1/1000
- · Multifactorial mostly
- · With chromosomal trisomies (+13,+18)
- · Syndromes associated with CL/CP/CLP
- · (van der Woude sy, EEC sy, Pierre Robin sequence...)
- Prenatal diagnosis by ultrasonography not sure

Cleft lip and palate- genetic risks

Relationship to index case	CLP	CP
Sibs (overall risk)	4%	1,8%
Sib (no other affected)	2.2%	
Sib(2 affected sibs)	10%	8%
Sib and parent affected	10%	
Children	4,3%	3%
Second-degree relatives	0,6%	

Neural tube defects

- Multifactorial inheritance (risk for I. degree relatives about 2 - 4%)
- · Maternal serum AFP screening
- · Prenatal diagnosis by ultrasonography
- · Raised AFP levels in amniotic fluid
- Primary prevention in pregnancies by folic acid
- Risk populations probably related to nutritional status

Teratogeny

 teratogen is a substance whose effect on embryo or fetus may cause abnormal development

action may be direct or through the maternal organism

Human Teratogens

- Physical (radiation, heat (fever), mechanical impact)
- · Chemical (chemicals, drugs)

- · Biological (infection, fungus ...)
- · Metabolic imbalance (disease mother)

The effect of teratogens depends on:

· dose

· length of the action

· contact time

· genetic equipment of the fetus and the mother

Critical period

 14.-18. days after conception - the rule "all od nothing"

- · 18.-90. day organogenesis
- The most sensitive period for the emergence of developmental defects

Drugs

Distribution of medicines practice into categories

```
    A
    B
    C
    D
    X
```

· Food and Drug Administarion, 1980

A

 in controlled studies have shown no evidence of risk to the fetus in the first trimester of fetal development or influence in the next period of pregnancy

product appears to be safe

B

 Animal reproduction studies demonstrate a risk to the fetus, but there's no controlled studies in women

Animal reproduction studies have shown adverse effects, but in controlled studies in women have not been confirmed

C

- Animal studies confirm the teratogenic embryotoxic or other adverse effects on the fetus,
- · non-controlled studies in women
- · lack of studies in animals and humans

product should be administered with caution and only in cases where the benefit for the woman of his administration exceeds the potential risk to the fetus

D

· risk to the human fetus is known

- medicine may be administered in a situation where its use for a woman needed (lifesaving)
- · no other safer drug is available

 studies in animals and in humans clearly demonstrate a teratogenic effect

drugs absolutely contraindicated in pregnancy

Drugs with teratogenic effect

- Thalidomid
- Hydantoin
- Valproic acid
- · Anti coagulans Warfarin
- · Trimetadion
- · Aminopterin
- · Methotrexat
- Cyklophosphamid

Drugs with teratogenic effect

- · Retinoids
- · Lithium
- Thyxreostatic drugs
- Androgens
- · Penicilamin
- · Enelapril, Captopril
- · Antituberkulotics-Streptomycin

Thalaidomid

- · congenital heart defects
- · limb reduction anomalies
- Other congenital defects

 (gastrointestinal, urogenital tract orofacial ears anomalies, CNS defects...)

Hydantoin

 Atypicaly face, growth retardation, mild mental retardation, behavioral problems, hypoplastic nails and fingers

Aminopterin a Methotrexat

 folic acid antagonist facial dysmorfism, cleft lip and/or palate, small mandible, malá dolní čelist, ears anomalies, hydrocephalus, growth and mental retardation, miscarriage

Warfarin

- · coumarin antikoagulans
- facial dysmorfism nasal cartilage hypoplasia, CNS - defects

Retinoids

- · Cleft lip and palate, mikrognatia, eyes anomalies, ears dysplasia
- · Defects of CNS
- · Thymus hypoplasia
- · Limb defects

Infection

- Toxoplasmosis
- · Rubella
- · Cytomegalovirus
- Herpesvirus
- · Others (parvovirus, antropozoonosy, chlamydia..)

TORCH

Toxoplasmosis

- · chorioretinitis
- · hydrocephalus or microcephaly
- · intracranial calcification, mental retardation
- · icterus, hepatosplenomegalia, carditis
- · prematurity
- positiv IgM in the mother treatment with Rovamycin
- · Prenatal dg.: serology, DNA-PCR)

Rubella

- hearing and vision impairment (cataract, glaucoma, mikroftalmia, blidness)
- · mental retardation
- · Cong. heart defects
- · icterus, hepatosplenomegalia
- · prevention- vaccination

Cytomegalovirus

- · Intrauterin growth retardation
- mikrocephaly, cacification in the brain, mental retardation,
- · hepatosplenomegaly
- Repeated maternal infection is possible
- · Prenatal dg.: serology, DNA-PCR

Varicella zoster

- · Skin lesions and defects
- · Brain domage, mental retardation
- · Eye defects
- · Prenatal dg. serology, DNA-PCR

Metabolic dysbalance

- · Fetal alcohol syndrom (FAS)
- · Maternal Phenylketonuria
- · Maternal Diabetes mellitus
- · Maternal Hypothyreosis

Fetal alcohol syndrom

- Hypotrophy, growth retardation, mental retardation
- facial dysmorphism
- · Congenital heart defects
- · Limb defekts
- Abuse of 60g pure alcohol / day (longterm)
- · Combine with malnutrition, folic acid deficit...

Maternal Phenylketonuria

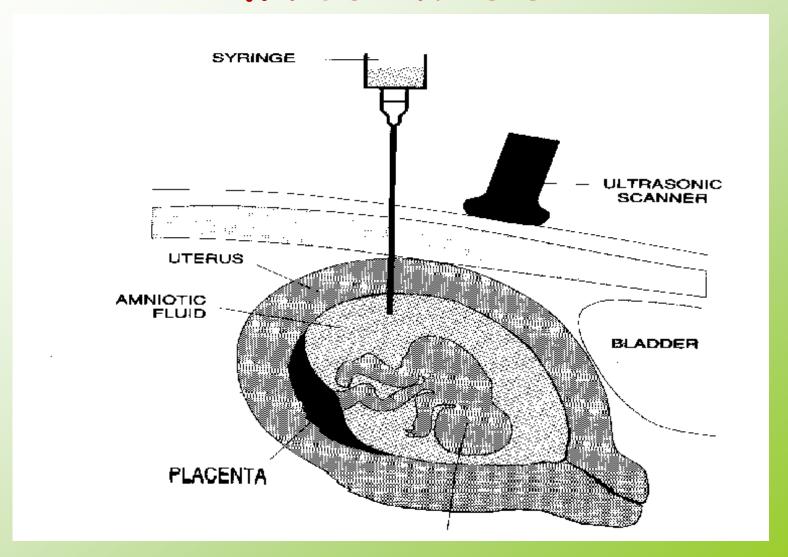
- · Low birth weith
- · nízká porodní váha, hypertonus
- · mikrocefalie, PMR
- · VCC
- · hyperaktivita
- · novorozenecký screening
- (frekvence 1/10 000 novorozenců, dědičnost AR)
- · Léčbu je třeba zahájit do 3 týdnů, jinak PMR

Prenatal diagnosis

· Non invasive - screening

· Invasive - CVS, AMC, kordocentesis

Prenatal screening (CR)


- · Ultrasound (12. 20. 33. week)
- · Ultrasound 20. week cong. defect
- Ultrasound 20-22. week cong. heart defect

- Free beta hCG, PAPP-A, US-NT:10-14.
 week of gestation
- · AFP, hCG, uE3 16.-18.week of gestation

Indications for prenatal diagnosis / counselling

- · Advanced maternal age (35)
- · Risk factors US congenital defects
- · Family history of known conditions for which diagnosis is possible (DNA analysis)
- Known chromosomal abnormality (de novo finding in previous child, structural change in parents)
- · Positive prenatal screening for chromosomal abnormalities

Amniocentesis

Preimplantation Genetic Diagnostics X PG Screening

· PGD high genetic risk

· PGS frequent aneuploidies

Genetic counselling in infertility

Infertility

- Is the infertility one aspect of a genetic disorder that might be transmitted?
- Will correction if infertility give an increased risk of malformations in the offspring?

· Genetic testing before use of metods of asisted reproduction.

Infertility

- Patological examination of the abortus where possible, this may identify major structural malformations.
- Cytogenetic study of parents, this is especially important where a structural abnormality is present.
- In general the finding of a chromosome abnormality in the abortus but not in parent is not likely to be relevant or affect the genetic risks.

Infertility

- · A search for possible lethal mendelian causes (consanguinity- risk for AR diseases, X-linked dominant disorders lethal in male, myotonic dystrophy which gives heavy fetal loss in the offspring of mildly affected women)
- Inherited trombophilias in women with recurrent abortions (factor V Leiden, factor II - G20210A, hyperhomocystinaemia? (MTHFR -C677T)

Sterility in male

· AZF deletions (DAZ gene) Yq

· CFTR mutations and polymorphisms

Genetic risk in cancer

Genetic testing in oncologic patients

- Diagnosis
- · Therapy
- · Prognosis
- · Minimal residual disease

Genetic risks in cancer

- Tumours following mendelian inheritance (most AD, about 5%)
- Genetic syndromes predisposing to malignancy
- · Embryonal and childhood tumours
- · Common malignant tumours of later life

Hereditary cancer syndromes

- · AD inheritance
- · Preventive, pre-symptomatic testing
- Assotiated problems
- · Prevention

Hereditary cancer syndromes following AD inheritance

- · Brest cancer BRCA 1 and BRCA 2
- · Familial Adenomatous Polyposis coli FAP
- · Von Hippel Lindau syndrome VHL
- · Retinoblastoma
- · Neurofibromatosis NF1, NF2
- · Li-Fraumeni syndrome
- Lynch syndrome hereditary non polypous colon cancer - HNPCC

Genetic testing in Hereditary cancer syndromes

- · Tests are voluntary
- Mostly in adults only

 In children only when prevention in childhood is present and when the risk of tumours is in childhood