Institute for Microbiology, Medical Faculty of Masaryk University and St. Anna Faculty Hospital in Brno

#### **Miroslav Votava**

## Agents of urinary tract infections

The 6th lecture for 3rd-year students of dentistry 7th December, 2010 Importance of central nervous system infections – revision

- CNS infections relatively rare, but can have a very serious course
- Incidence bacterial meningitis: 2/100.000/year viral meningitis: 10/100.000/year
- Lethality bacterial meningitis, non-treated: >70 %
  - treated: ~10 %

# Etiology of <u>acute meningitis</u> – revision I

- Always distinguish purulent meningitis (nearly always of bacterial origin)
  - from aseptic one (usually of viral origin)
- Anamnesis
- **Clinical disease**
- Laboratory above all the examination of CSF cytology (appearance and number of cells) biochemistry (proteins and glucose) microbiology (microscopy, antigens, culture)

## Etiology of <u>acute</u> meningitis – revision II

#### Cytology and biochemistry of CSF

| marker   | norm               | <u>purulent</u><br>meningitis | <u>aseptic</u><br>meningitis |
|----------|--------------------|-------------------------------|------------------------------|
| cells    | 0-6/µl             | <b>↑</b> ↑↑ (>1000)           | <b>↑</b> ↑(100-500)          |
| proteins | 20-50<br>mg/100 ml | <b>↑</b> ↑ (>100)             | <b>(50-100)</b>              |
| glucose  | 40-80<br>mg/100 ml | <b>↓</b> (<30)                | ~ (30-40)                    |

#### Etiology of <u>acute</u> meningitis – revision III

Etiology of <u>purulent</u> meningitis by the age in %

| age    | GBS | Haem.<br>infl. b | Neiss.<br>men. | other | Str.<br>pneu. |  |
|--------|-----|------------------|----------------|-------|---------------|--|
| 0-1 m. | 50  |                  |                |       |               |  |
| 1-4 y. |     | 70               |                |       |               |  |
| 5-29   |     |                  | 45             |       |               |  |
| 30-59  |     |                  |                | 40    |               |  |
| ≥60    |     |                  |                |       | 50            |  |

#### Etiology of <u>acute</u> meningitis – revision IV

Etiology of <u>purulent</u> meningitis by the age in %

| age    | GBS | Haem.<br>infl. b | Neiss.<br>men. | other | Str.<br>pneu. | List.<br>mono. |
|--------|-----|------------------|----------------|-------|---------------|----------------|
| 0-1 m. | 50  |                  |                | 33    |               | 10             |
| 1-4 y. |     | 70               | 15             |       | 10            |                |
| 5-29   |     |                  | 45             | 25    | 20            |                |
| 30-59  |     |                  | 10             | 40    | 33            |                |
| ≥60    |     |                  |                | 25    | 50            | 15             |

#### Etiology of <u>acute</u> meningitis – revision V

Importance of purulent meningitis according to etiology

(lethality and sequelae)

| impor-<br>tance | GBS | Haem.<br>infl. b | Neiss.<br>men. | other | Str.<br>pneu. | List.<br>mono. |
|-----------------|-----|------------------|----------------|-------|---------------|----------------|
| letha-<br>lity  |     |                  |                |       | †             | †              |
| seque-<br>lae   |     | +++              |                | +     | +             | +              |

### Etiology of <u>acute</u> meningitis – revision VI

### The most common agents of <u>aseptic</u> meningitis: <u>VIRUSES</u>

mumps virus (but CNS infection is clinically silent) enteroviruses: echoviruses (30 serotypes) coxsackieviruses (23 + 6 serotypes) tick-borne encephalitis virus (TBEV) rarely HSV and VZV and other neuroviruses

rarely some <u>bacteria</u>

*leptospirae, borreliae, Mycobacterium tuberculosis* 

#### **Overview of Central-European neuroviruses – revision**

**TBEV** (tick-borne enc. v.) other arboviruses enteroviruses: polio **LCMV** /morbilli v./ coxsackie echo **/EBV/** /polyomaviruses JC & BK/ mumps v. HSV, VZV, CMV /HIV/ /prions/ rabies v.

## Arboviruses in Central Europe – revision I

| <i>Genus or family</i> :<br>arbovirus | Disease | Antibodies<br>only |
|---------------------------------------|---------|--------------------|
| Flavivirus: TBEV                      | +       |                    |
| WNV (West Nile v.)                    | +       |                    |
| Orbivirus: Tribeč                     | +       |                    |
| Bunyaviridae: Ťahyňa                  | +       |                    |
| Batai (Čalovo)                        | ?       |                    |
| Uukuniemi                             | ?       |                    |
| Alfavirus: Sindbis                    |         | +                  |
| Coltivirus: Eyach                     |         | +                  |

## Arboviruses in Central Europe – revision II

Arboviruses isolated in Czech Republic, probably nonpathogenic for humans: Bunyaviridae: Lednice Sedlec

Other European pathogenic arboviruses, which may be imported:

dengue v. (flavivirus, Greece) CCHFV (nairovirus, Ukraine, Bulgaria) Toscana v. (phlebovirus, Italy) Bhanja v. (bunyavirus, Slovakia) chikungunya v. (alphavirus, Italy)

#### Etiology of <u>chronic meningitis</u> – revision

• Bacteria:

#### Mycobacterium tuberculosis (meningitis basilaris)

Moulds and yeasts:

aspergilli Cryptococcus neoformans

### Etiology of <u>encephalitis</u> – revision

#### Encephalitis – only acute, of viral origin:

- tick-borne encephalitis v.
- HSV
- enteroviruses
- mumps v.

#### Etiology of <u>acute brain abscess</u> – revision

Acute brain abscesses are only of <u>bacterial</u> origin:

- mixed anaerobic and aerobic flora
- staphylococci (both S. aureus and coagulase negative staphylococci)
- group A and D streptococci

### Etiology of <u>chronic brain abscess</u> – revision

#### bacteria:

Mycobacterium tuberculosis

Nocardia asteroides

mycotic organisms:

Cryptococcus neoformans (yeast)

parasites:

**Cysticercus cellulosae (tissue form of pork tapeworm Taenia solium)** 

## **Urinary tract infections (UTIs)**

Frequency of UTIs: The 2nd most common infections (after respiratory ones)

In adults: the most common infections in a general practitioner's office

Afflicting mainly females (because of shorter urethra)

### **Examples of UTIs**

The most common UTI: cystitis develops ascendently caused by intestinal microflora main symptoms: dysuria (difficult urination with sharp and burning pain) pollakisuria (urgent need to urinate accompanied by urination of a small amount of urine only) **Other UTIs: mainly pyelonephritis (more serious)** origin: ascendent or hematogenous urethritis – will be dealt with as STD

## **Etiology of UTIs**

Proportional representation of microbes differs in

- non-complicated UTIs
- infections accompanying structural abnormalities (prostatic hypertrophia, urinary stones, strictures, pregnancy, congenital defects, permanent catheters)
- infections accompanying functional disorders (vesicoureteral reflux, neurological disorders, diabetes mellitus)

### Etiology of non-complicated UTIs

- circa 80 % Escherichia coli
- circa 10 % enterococci (Enterococcus faecalis)
- circa 5 % Proteus mirabilis
- rest: other enterobacteriae (Klebsiella pneumoniae, Kl. oxytoca, Ent. cloacae, C. freundii etc.) Streptococcus agalactiae coagulase neg. staphylococci (S. epidermidis, S. saprophyticus, S. haemolyticus etc.)
  - yeasts (mainly Candida albicans)

#### **Etiology of complicated UTIs**

circa 80 %: the rest:

Escherichia coli Klebsiella pneumoniae Proteus mirabilis Pseudomonas aeruginosa enterococci other enterobacteriae acinetobacters other G-neg. non-fermenting rods candidae

#### Lege artis taking a urine sample

- 1. Only after a thorough cleaning of genital incl. external orificium of urethra by means of soap and water
- 2. Take the middle stream of urine only
- 3. Use a sterile vessel
- 4. Pour urine into a sterile tube & stopper it promptly
- 5. If not possible to process it within 2 hours, place the specimen into 4 °C for 18 hours at most

Semi-quantitative examination of the urine sample – I

- We are interested
- not only in the kind of microbe present in the urine sample, but especially
- in the amount of the microbe
- Why are we interested in the number of microbes in 1 ml of urine?
- Because
- high numbers only stand for the UTI
- low numbers mean usually contamination acquired during urination

Semi-quantitative examination of the urine sample – II

Therefore, the urine is inoculated on culture media by means of calibrated loop, usually taking 1 µl of urine

In this case

1 colony means 10<sup>3</sup> CFU/ml 10 colonies mean 10<sup>4</sup> CFU/ml 100 colonies mean 10<sup>5</sup> CFU/ml

(CFU = colony-forming unit = 1 bacterial/yeast cell)

## Significant concentrations of bacteria in urine

| Type of<br>specimen,<br>symptoms | Type of microbe           | Significant<br>number<br>(CFU/ml) |
|----------------------------------|---------------------------|-----------------------------------|
| Middle stream,                   | Primary urine<br>pathogen | <b>10</b> <sup>3</sup>            |
| present                          | Dubious urine<br>pathogen | <b>10</b> <sup>5</sup>            |
| Middle stream,<br>no symptoms    | Any                       | <b>10</b> <sup>5</sup>            |
| Suprapubic punction              | Any                       | <b>10</b> <sup>1</sup>            |

#### **Primary urine pathogens**

- **Escherichia coli & most of other enterobacteriae** enterococci (mostly *Enterococcus faecalis*)
- Streptococcus agalactiae
- staphylococci (mostly coagulase negative: S. epidermidis, S. saprophyticus, S. haemolyticus etc.)
- yeasts (in the main Candida albicans)
- **Pseudomonas aeruginosa & some other Gram**negative non-fermenting rods

#### Homework 6

Who is the author of this painting and what is its name?



#### **Answer and questions**

The solution of the homework and possible questions please mail (on 6.30 a.m. at the latest) to the address

#### mvotava@med.muni.cz

Thank you for your attention