
PHARMACOLOGY OF ANAESTHETICS

Katarina Zadrazilova

FN Brno, October 2010

AIMS OF ANAESTHESIA

Triad of anaesthesia

- **Neuromuscular blocking agents** for muscle relaxation
- Analgesics/regional anaesthesia for analgesia
- Anaesthetic agents to produce unconsciousness

Why unconscious patient require analgesia ?

Overview

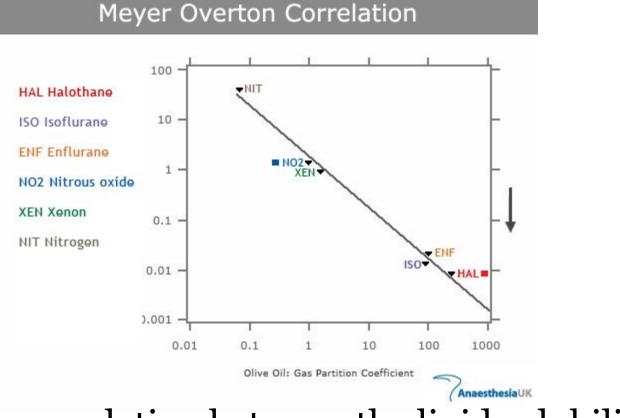
- Intravenous and inhalational anaesthetics
- Analgesics simple, opioids
- Muscle relaxants
- Decurarization

INTRAVENOUS ANAESTETICS

Stages of anaesthetics

- Induction putting asleep
- **Maintenance** keeping the patient asleep
- **Reversal** waking up the patient

- Onset of anaesthesia within one arm brain circulation time – 30 sec
- Effect site 🛋 brain
 - Propofol
 - Thiopentale
 - Etomidate


General anaesthetic-how do they work

• TASK – EXPLAIN

- 1. Loss of conscious awareness
- 2. Loss of response to noxious stimuli
- 3. Reversibility
- Anatomical site of action
 - Brain : thalamus, cortex
 - Spinal cord

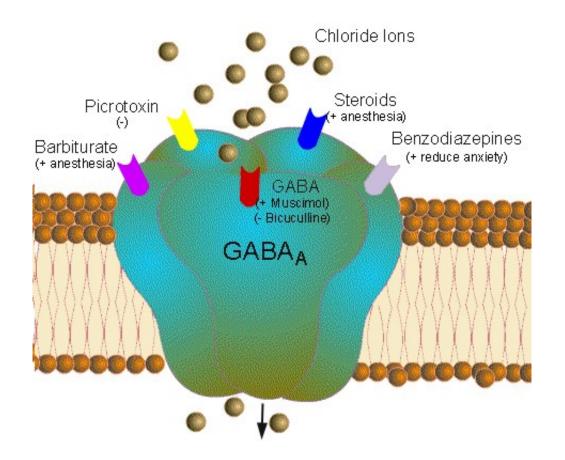
GA - how do they work

Molecular theories

• Linear correlation between the lipid solubility and potency

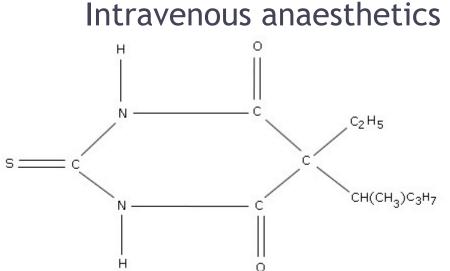
GA - how do they work

Molecular theories


- Critical volume hypothesis
 - Disruption of the function of ionic channels
- Perturbation theory
 - Disruption of annular lipids assoc. with ionic channels
- Receptors
 - Inhibitory GABA A, glycin

• Excitatory - nAch, NMDA

enhanceinhibit


GA - how do they work

GABA_A receptor

Thiopentale

- Barbiturate
- **Dose** 3-7 mg/kg
- Effects : hypnosis, atiepileptic, antanalgesic
- Side effects
 - □ CVS: myocardiac depression, ↓CO
 - Reduction in MV, apnea

Thiopentale

Problems with use

- Extremely painfull and limbtreatening when given intra-arterially
- Hypersensitivity reactions 1: 15 000

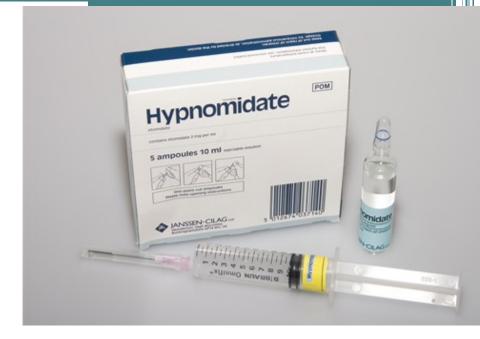
Contraindications

Porphyria

Propofol

- Phenolic derivative
- **Dose** 1- 2.5 mg/kg
- Effects : hypnosis
- Side effects

- CVS: myocardiac depression, \downarrow SVR, \downarrow CO
- Respiratory depression
- Hypersensitivity 1 : 100 000


Propofol

- Other effects
 - Pain on induction
 - Nausea and vomiting less likely
 - Better for LMA placement then thiopentale

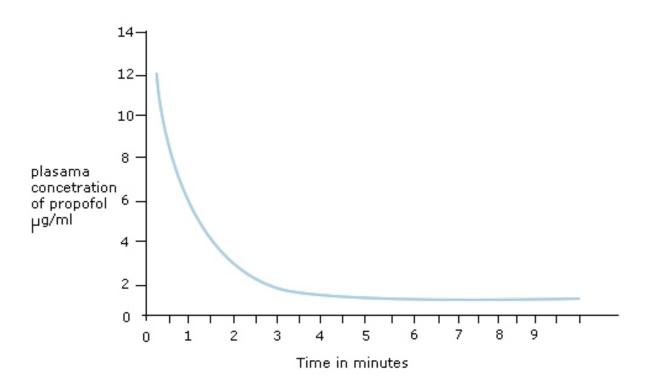
Relative contraindications Children under 3

Etomidate

- Ester
- **Dose** 0.3 mg/kg
- Effects : hypnosis
- Side effects
 - CVS: very little effect on HR, CO, SVR
 - Minimal respiratory depression

Etomidate

Problems with use


- Pain on injection
- Nausea and vomiting
- Adrenocortical suppression
- Hypersensitivity reaction 1: 75 000

Relative Contraindications

Porphyria

Pharmakokinetics

• Recovery from single bolus 5-10 min

Choice of induction agent

- 1. Are any agents absolutely contraindicated ?
 Hypersensitivity, porphyria
- 2. Are there any patient related factors ?
 - CVS status
 - Epilepsy
- 3. Are there any drug related factors ?
 - Egg allergy

Induction + maintenance

SUMMARY - IV anaesthetics

- Mechanism of action via receptors
- Used for anaesthesia and sedation
- Used for induction
- Propofol used for maintenance as well
- Thiopentale, propofol, etomidate
- All cause CV and respiratory depression

INHALATIONAL ANAESTETICS

Anaesthetic gases

- Isoflurane
- Sevoflurane
- Halothane
- Enflurane
- Desflurane

Inhalational anaesthetics

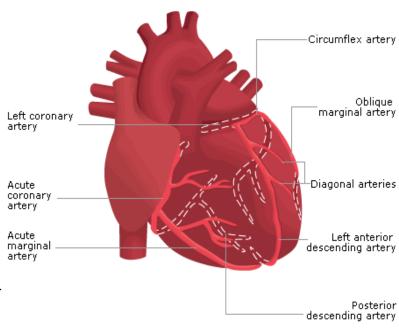
Anaesthetic gases

- Any agent that exists as a liquid at room temperature is a **vapour**
- Any agent that cannot be liquefied at room temperature is a **gas**
 - Anaesthetic 'gases' are administered via vaporizers

Potency

- MAC that concentration required to prevent 50 % of patients moving when subjected to standart midline incision
- Sevoflurane MAC 1.8 %
- Isoflurane MAC 1.17 %

Potency


- MAC that concentration required to prevent 50 % of patients moving when subjected to standart midline incision
- Sevoflurane MAC 1.8 %
- Isoflurane

MAC 1.0 %

Respiratory and cardiovascular effects

- All volatile anaesthetics cause ↓ MV and ↑RR
- Isoflurane is irritant vapour
- ↓ SVR, blood pressure falls, ↑ HR
- Isoflurane ? Coronary steel
- Nitrous oxide minimal effect

Metabolism and toxicity

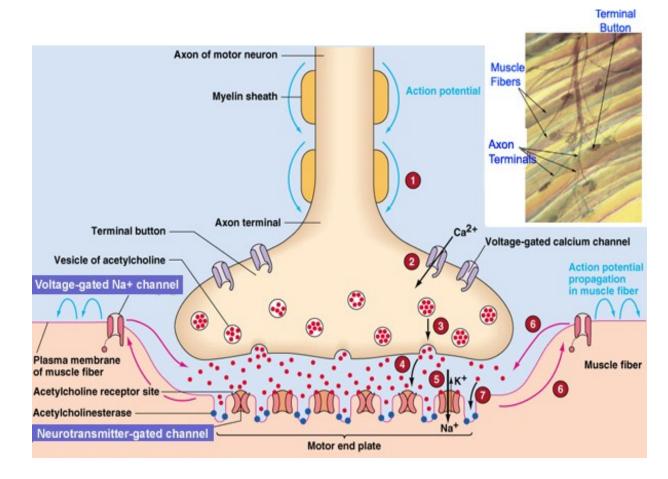
- Isoflurane (0.2 %) and Sevoflurane(3.5%) are metabolized by liver
- **F**⁻ ions are produced ? Renal impairment
- Iso and Sevo trigger malignant hyperthermia
- N2O megaloblastic anaemia

SUMMARY - inhalational anaesthetics

- Mechanism of action via receptors
- Used for induction (sevoflurane)
- And maintenance of anaesthesia
- Commonly used : Sevoflurane, Isoflurane
- Dose dependent CV and respiratory depression
- All, but N2O trigger malignant hyperthermia

NEUROMUSCULAR BLOCKING AGENTS

- Exclusively used in anaesthesia and intensive care
- Two classes
 - Depolarizing
 - succinylcholine
 - Non depolarizing
 - Vecuronium aminosteroid
 - Atracurium benzylisoquinolinium



Use of NMBs

- Tracheal intubation
- Surgery where muscle relaxation is essential
- Mechanical ventilation

Neuromuscular junction

ĊЊ

O

CH3

Mechanism of action

- Depolarizing
 - Structurally related to Ach
 - First activating muscle fibres, then preventing further response
- Non depolarizing
 - Compete with Ach at nicotinic receptor at the neuromuscular junction

Choice for tracheal intubation

Elective surgery	Emergency surgery
Standart induction	Rapid sequence induction
Non depolarizing agent	Succinylcholine

Intubating doses

Succinylcholine	1 – 2 mg/kg
Vecuronium	0.1 mg/kg
Atracurium	0.5 mg/kg

To maintain paralysis

• Non depolarizing muscle relaxants

Succinylcholine	No
Vecuronium	0.02 – 0.03 mg/kg
Atracurium	0.1 – 0.2 mg/kg

Succinylcholine

Patient related contraindications

- Malignant hyperpyrexia
- Anaphylaxis to SCh
- Succinycholine apnea
- Clinical contraindications
 - Denervation injury
 - Penetrating eye injury

Succinylcholine - other adverse effects

- Bradycardia
- Muscle pain 'sux' pain
- Transient raised pressure in eye, stomach and cranium
- Raise in potassium

Succinylcholine pharmacokinetics

- Duration of action : 3 5 min
- Metabolism plasma cholinesterase
 - Cave: suxamethonium apnea

$$\begin{bmatrix} CH_{3} & O & CH_{3} \\ I & I \\ CH_{3}-N^{+}-CH_{2}CH_{2}O-C-C-CH_{2}CH_{2}-C-O-CH_{2}CH_{2}-N^{+}-CH_{3} \\ I \\ CH_{3} & CH_{3} \end{bmatrix}^{2 CI^{-}}$$

Non depolarizing muscle relaxants

- Choice of NMBs
 - Personal preference
 - Atracurium better in renal or hepatic failure
 - Avoid atracurium in asthmatic patients

Reversal

- Acetylcholine esterase inhibitor neostigmine
 Increases concentration of Ach at NMJ
- Neostigmine acts at all sites where acetylcholine esterase is present including heart

What effect this might have and how this can be overcome?

Neostigmine

- Dose of neostigmine 0.05 mg/kg
- In > 50 kg man 2.5 mg
- Given with atropine 0.5 mg

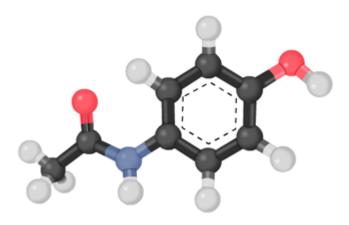
Peripheral nerve stimulator

- Check the depth of neuromuscular blockade
- Determine that neuromuscular blockade is reversible
- Check that blockade has been reversed safisfactorily

SUMMARY - muscle relaxants

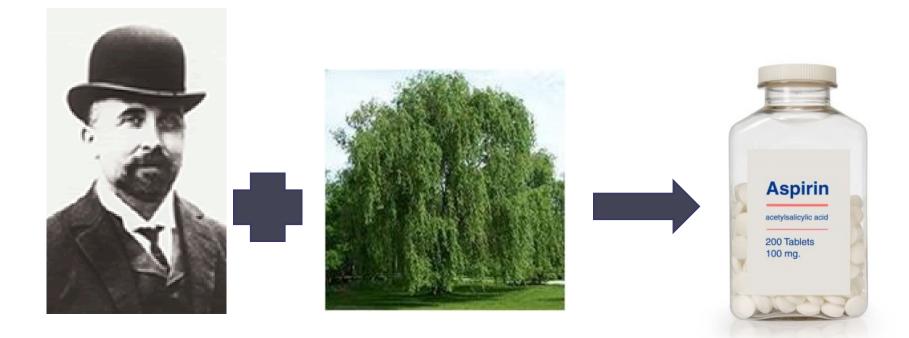
- Mechanism of action via acetylcholine receptor
- Used to facilitate tracheal intubation, mechanical ventilation and surgery
- Depolarizing Succinylcholine
 Lots of side effects
- Non depolarizing Vecuronium, Atracurium
 - Minimal CV and Resp. effects

ANALGESICS


Analgesics

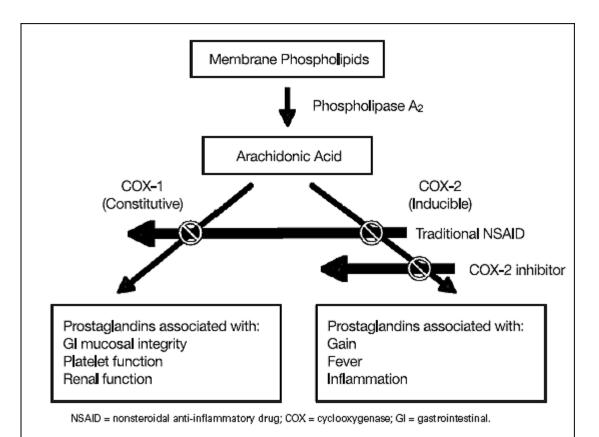
- Paracetamol, aspirin
- Other Non Steroid Anti Inflamatory Drugs
- Opioids
- Local anaesthetics
- Antidepressants
- Anti-epileptics
- Ketamine
- Clonidine

NSAIDs - effects


- Antipyretic
- Anti-inflamatory
- Analgesic

• Antipyretic agents found in white willow bark and led to development of aspirin

Aspirin


- Anti-inflamatory agent in joint disease
- Cardiovascular unstable angina
- Antiplatelet drug prevention of stroke
- Radiation induced diarrhoea
- Alzheimer's disease

What else is aspirin used for ?

NSAID - mechanism of action

• Inhibition of cyclo-oxigenase

NSAID - side effects

- Gastric irritation
- NSAID sensitive asthma
- Renal dysfunction analgesic nefropathy
- Antiplatelet function
- Hepatotoxicity
- Drug interaction warfarin, lithium

	Aspirin	Paracetamol	
Chemistry	Acetic acid	Paraaminophenol	
Mechanism of action	Inhibition of COX 1	? COX 3 inhib	
Metabolism	Estrases in gut wall, liver	Liver	
Toxicity	Hepatic/renal inpairment	GI upset	
	GI upset	Trombocytopenia	
	Rayes syndrome in kids	Liver necrosis	
Dose	300 – 900 mg every 6 h	1 g every 6 h	
Route of administration	orally	PO/PR/IV	

Other NSAIDs

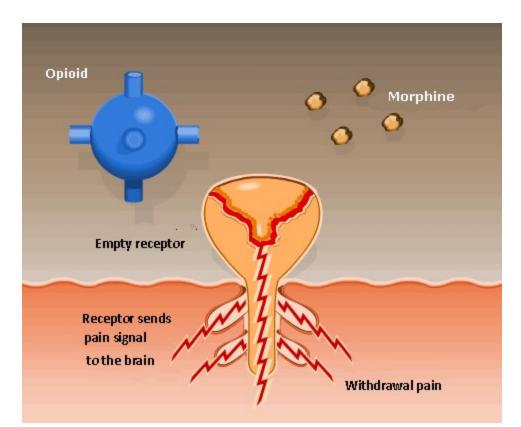
- Ibuprofen the lowest risk of GI upset
- Indomethacin, Diclofenac mainly antiinflamatory effect
- Metamizole –Novalgin
- Aspirin and NSAIDs are not contraindicated for regional anesthesia

SUMMARY - simple analgesics

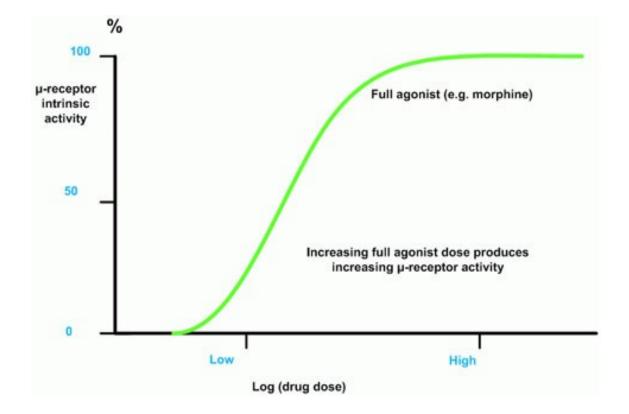
- Aspirin, Paracetamol
- NSAID
- MOA inhibition of COX
- Renal, gastric, hepatic side effects
- Can trigger NSAID sensitive asthma

Opiods

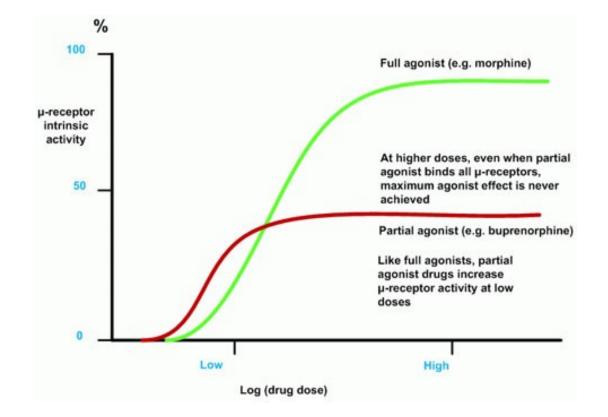
• MORPHEUS- GREAK GOD OF DREAMS


Definitions

 Opiate : naturally occuring substance with morphinelike properties **Opiods**


- **Opioid** synthetic substance
- Narcotic from greek word ' numb'

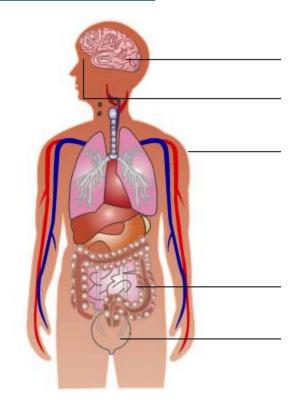
Opioids - mechanism of action


- Via opioid receptors
 - [□] μ receptor
 - [□] κ receptor
 - δ receptor

Opioids - dose - response curve

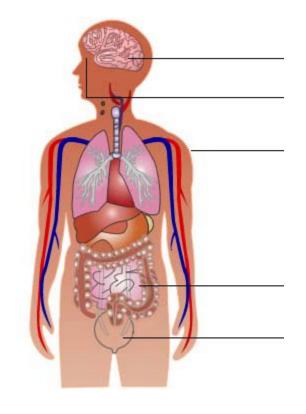
Opioids - dose - response curve

Opiods


Uses and routes of administration

- Analgesics
- Anti tussive
- Anti diarrhoea
- Intravenously
- Intramuscularly
- Oral, Buccal, rectal
- Transdermal Patches
- Epidural/intrathecal

Opioids - effects


• Brain:

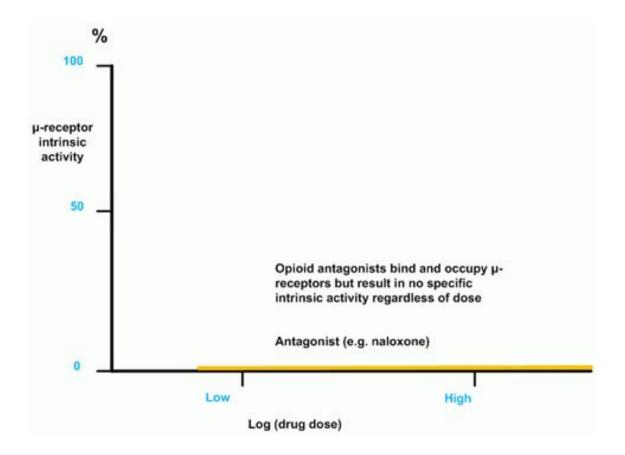
- Analgesia, sedation
- Respiratory depression
- Euphoria and dysphoria
- Addiction, tolerance
- Nausea and vomiting
- Eyes
 - Meiosis
- Cardiovascular system
 - Hypotension, bradycardia

Opioids - effects

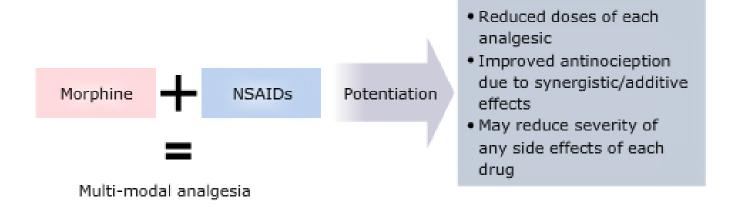
- Respiratory system
 Anti tussive effect
- GI tract
 - spastic immobility
- Skin
 - Pruritus histamine release
- Bladder
 - Urinary retention

Opiods

Commonly used opioids


	Dose	Elimination ½ life	Metabolism	Comment
Sufentanyl	0.1 µg/kg	50 min	liver	Faster onset then fentanyl
Fentanyl	1-2 µg/kg	190 min	liver	Neurosurgery, patches
Alfentanyl	5 – 25 µg/kg	100 min	liver	Faster onset then sufentanyl
Remifentanyl	0.05 – 2 µg/kg	10 min	Plasma and tissue esterases	Infusion only, very short context sensit. ¹ / ₂ life

Opiods

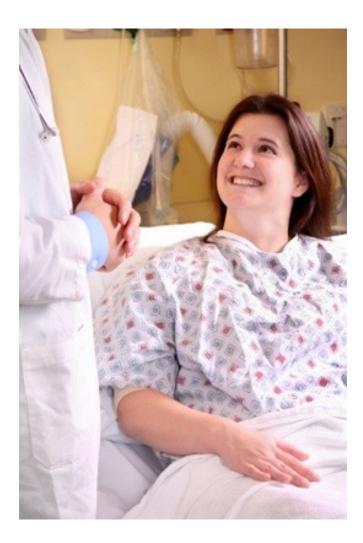

Naloxone

- Pure opioid anatagonist at μ , δ and κ receptors
- Used in opioid overdose
- Dose : 1- 4 μg/kg
- Duration of action 30 40 min
- ! Often shorter then duration of action of opioid, need for repeated doses

Naloxone - dose - response curve

Multimodal analgesia

SUMMARY - opioids


- Morphine, Fentanyl, Sufentanyl, Alfentanyl
- MOA via opioid receptors
- Used for analgesia, anti tussive, anti diarrhoea
- Side effects : respir. depression, tolerance, constipation, nausea + vomiting
- Opioid overdose reversal Naloxone
- Multimodal analgesia simple analgesics + opioids

SUMMARY

Triad of anaesthesia

- Analgesia
- Anaesthesia
- Muscle relaxation
- Choice depends on
 - Patient factors
 - Type of surgery
 - Whether the surgery is elective or emergency

Questions ?

