
Biofilm in bacteria

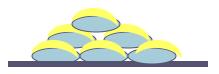
MUDr. Černohorská Lenka, PhD.

Department of Microbiology Masaryk University Medical School and St. Anna s Faculty Hospital, Brno, Czechia

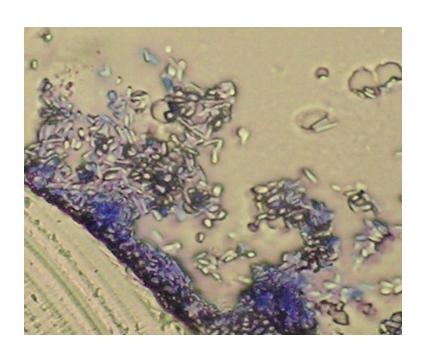
- Who can form biofilm (bacteria, viruses, yeasts, 1species, more species, multibacterial community)
- Where is the biofilm (almost on solid surfaces)
- How do microbes form biofilm (difficult mechanism)
- Why do they form biofilm (guard against various circumstances)

Who can form a biofilm?

- P. aeruginosa
- S. coagulase negative
- K. pneumoniae
- E. coli
- S. aureus
- E. faecalis
- A. baumanii
- almost all bacteria, yeasts and fungi



Where do we find biofilm?


- Catheters (bloodstream..)
- Contact lens
- Teeth implantates
- Medical devices
- Water <u>tubes</u>
- Plaque on teeth, higher consumation of sugars + minimum teeth brushing are the cofactors in dental caries formation
- Stones in river physiological!

Stages of biofilm development

- Attachment to this surface
- Adhesion, growth, and aggregation of cells into microcolonies
- Production of polymeric <u>matrix</u> -
- Formation of three-dimensional structure known as a biofilm

Biofilm formation in time

aviable on www.medmicro.info

Main importance of biofilm formation

Bacteria harbored inside are protected against:

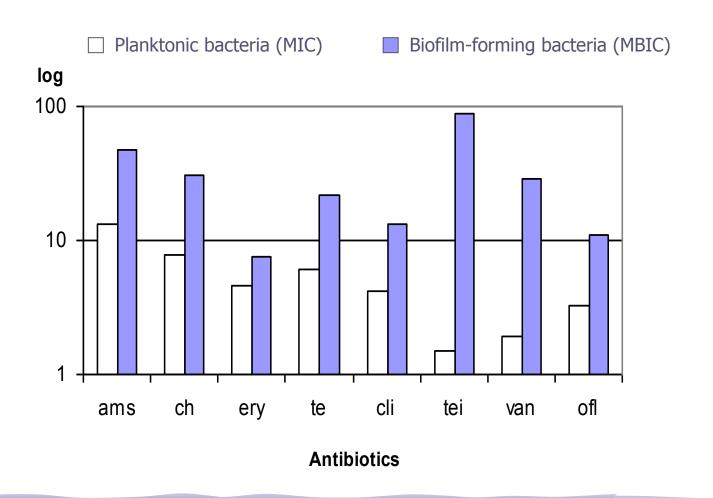
- antibiotic action
- * host s immune response
- disinfection

The inefficiency of antibiotics may be due to:

Polyanionic charge of sessile cells

- Decreased bacterial growth
- Diffusion barrier of glycocalyx
- Reaction with biofilm matrix
- Formation of protected phenotypes
- Mechanism of intercellular signalling
- Host s <u>immune response mechanisms...</u>

Biofilm detection



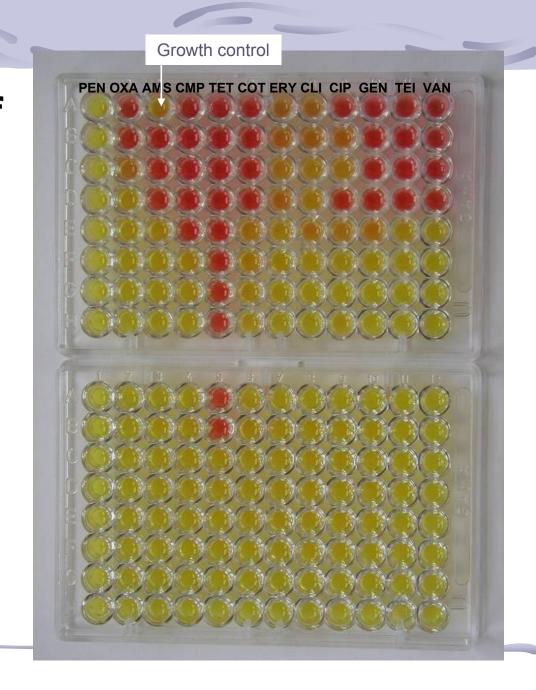
- In test tubes or in plate via Christensen¹
 cultivation, washing of planktonic bacteria + staining of adhering
 - bacteria blue colour on whole tube wall not only a ring or sediment it is a biofilm!
- Detection in tubes stained with alcian blue
- El. microscopy, SEM, TEM
- Special cultivators and phenotypic methods
- Genotypic methods (PCR, FISH) etc.

Biofilm susceptibility testing

- Cultivation of wild-type bacteria v "microtitrate" plate in broth
- Washing of planktonic bacteria + <u>adding</u> of dilluted <u>antibiotic</u> (combination of ATB) and cultivation
- MBEC (minumum biofilm eradication concentration) was determined
- MBEC was compared with MIC (minimum inhibitory concentration)
- Synergy testing of 2 antibiotics: FBIC (fractionate biofilm inhibitory concentration) was determined in special laboratories
- Clinical relations

MIC vs. MBEC values

Abbreviations: ams - ampicillin/sulbactam, ch - chloramphenicol, ery - erytromycin, te - tetracyclin, cli - clindamycin, tei - teicoplanin, van - vancomycin, ofl - ofloxacin

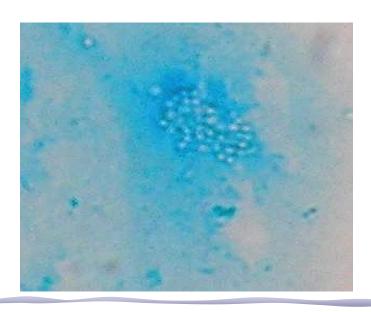

Antibiotic susceptibility of S. aureus no. 351

351	MIC	MBEC	
amp/sulbact.	0,125*	2*	
tetracyclin	2*	64	
clindamycin	2*	32	
ofloxacin	0.25*	>8	
teicoplanin	0.031*	>8	
vancomycin	0.5*	4*	

S. aureus 351	∑FBIC ≤0.5	∑FBIC > 0.5a≤1	∑FBIC >1a ≤ 4	∑FBIC > 4
Antibiotic combinations	strong SE	partially SE	indifferent	antagonism
clindamycin+vancomycin			2,00	
clindamycin+tetracyclin		1,00		
ofloxacin+teicoplanin			1,30	
teicoplanin+ampicillin/sulbactam	0,38			
vancomycin+tetracyklin			2,00	
ampicilin/sulbactam+ofloxacin			2,00	

^{*} susceptible according to conventional MIC evaluation. MBIC 4x - 256x higher than MIC (mg/l)

Determination of MBEC


Results + eradication

- ✓ MBIC values are often higher than break point for tested antibiotics (bacteria are resistant) + also higher than MIC
- 1 ATB does not work? Use <u>ATB combination</u> <u>synergy</u> testing can be also used for multiresistant planktonic bacteria (with modifications)
- Resistance to <u>ATB combinations?</u> Explantation of a biofilm *focus* (removing of catheters, joint/teeth implantates)
- Prevention: catheters <u>coated with antimicrobial</u>. <u>substances</u> - minocyclin and rifampicin, washing, hygiene...

1 – Microscopy of oral biofilm

- Gramm staining G +, G- bacteria, host cells (epitelium, leukocyte etc.)
- Alcian blue stains polysaccharide material

2 – Teeth brushing and oral biofilm

Volunteer gum tablette with colour staining the teeth plaque. Tablette stay in oral cavity for 2 min. Draw the plaque

3- Catheters

- Classic cultivation in broth: We detect only bacteria in planktonic form. Bacteria in biofilm wont' leave the catheter wall
- Semiquantitative method: We detect bacteria on surface of a catheter and can semiquantitative count them, but we can not detect bacteria inside the lumen
- Sonification: destroys biofilm on catheter surface as a well as on catheter inside. Inoculation of specific sample volume enable to determinate quantity of microbes

4 — Presence of saccharides in food and teeth plaque formation

Look at various amount of saccharides in food and biofilm formation speed in cariogennous *Streptococcus mutans.* What 's happen?

Higher amounts of saccharides in food + higher length of staying in oral cavity-higher plaque....!

5 — MIC versus MBEC

- MIC minimum inhibitory concentration of ATB (planktonic form)
- MBEC the lowest concentration of antibiotic, where is the eradication of a biofilm possible (any living cells, pH without change row stay red) (for biofilm forming bacteria).