Cavity preparation basic rules

L. Roubalíková

Preparation of dental caries (cavity preparation)

- Instrumental treatment that removes dental caries
- The rest of the tooth must be restorable with filling materials
- The rest of the tooth as well as the filling must be resistant against occlusal forces
- The risk of secondary caries must be minimized

Acces to the cavity

Preparation of cavity borders and <u>extention</u>

for prevention

Retention of the filling

Resistance of the restored tooth

Excavation of carious dentin

Finishing of the walls

Final control

Acces to the cavity

Preparation through the hard dental tissues Removing of the undermined enamel Separation of teeth Separation or removing of gingiva

Preparation of cavity borders and <u>extention</u> for prevention (Cavosurface margin)

Depends on Dental material Oral hygiene

Precautions of secondary caries

Retention of the filling

Precautions of its lost Macromechanical retention Micromchanical retention Chemical retention

Resistance of the restored tooth

Against occlusal and other forces

Depends on

- Material
- Individual occlusal forces

Excavation of carious dentin

Necessary (risk of recurrent caries)

Ball shaped (spheric) bur - slow speed (3000 rpm) or

Excavator

Finishing of the walls

Depends on the kind of material

- Bevel or without bevel
- Fine diamond bur

Final control

Direct or indirect view Good illumination Magnification

Preparation

• Hand

Excavator, cleaver

Power driven
 Burs, diamonds

Chisel – for enamel Cleaver

Chisel for enamel

Excavator

Instruments for cavity preparation

- Power driven (powered) instruments for cutting
- Rotary instruments
- Comon design characteristics

Cutting instruments - burs

Steel Tungsten carbide

Round (ball shaped)

Fissure with flat end

Fissure with pointed end

Straight or tapered form

Cutting instruments – diamonds

Extra coarse – black

Coarse – green

Standard – blue or without any marker

Fine - red

Extra fine - yellow

Ultrafine - white

Cutting instruments – diamonds head shape

• Ball, pear, cylinder,taper,flame, torpedo, lens and others.....

Hazards with cutting instruments

Pulpal precautions Soft tissue precautions Eye precautions Ear precautions Inhalation precautions

Filling materials

- Temporary
- Definitive, permanent

Temporary filling materials

- Zinkoxidsulphate cement and one component derivates
- Ziknoxidphosphate cement
- Zinkoxideugenol cement
- Polymer based materials
- Guttapercha

Permanent filling materials

Amalgam

Composites

Glasionomers

Amalgam

L. Roubalíková

Amalgam

Metal-like restorative material composed of silver-tin-copper alloy and mercury.

Types of amalgam restorative materials

Low – Copper Amalgam (5% or less copper) Composition – wt%

Silver	63 - 70 %
Tin	26 – 28 %
Copper	2 - 5%
Zinc	0 - 2%

Types of amalgam restorative materials

<u>High – Copper Amalgam (13% - 30%)</u> <u>copper</u> Composition – wt%

Silver40 - 70 %Tin26 - 30 %Copper2 - 30%Zinc0 - 2%

Particles of the alloy

✓ Irregulary shaped (filings - lathe cut)

✓ Microsphers

✓ Combination of the two.

Particles shape

<u>High – Copper Amalgam</u> Microsphers of the same composition (unicompositional)

Mixture of irregular and spherical particles of different or the same composition (admixed)

Production of irregular particles

Metal ingrediences heated, protected from oxidation, melted and poured into a mold to form an ingot. Phases of the alloy:

```
Ag<sub>3</sub>Sn - \gamma
Cu<sub>3</sub>Sn - \epsilon
Cu<sub>6</sub>Sn<sub>5</sub> - \eta
Ag<sub>4</sub>Sn - \beta
```

Production of irregular particles

cooled slowly

Ingot heated at 400°C (6 – 8 hours) (homogeneous distribution of Ag_3Sn)

Ingot cut on the lathe, particles passed trough a fine sieve and ball milled to form the proper particle size.

Aging of particles (60 - 100° C, 6 - 8 hours)

Particle size: $60 - 120 \ \mu m$ in length $10 - 70 \ \mu m$ in width $10 - 35 \ \mu m$ in thickness

Production of irregular particles

Molten alloy is spraying into water under high pressue

Irregulary shaped highcopper particles

Production of spherical particles

Molten alloy is spraying under high pressue of inert gas through a fine crack in a crucible into a large chamber

Diameter of the spheres: $2 - 43 \mu m$

alloy is mixed with pure mercury

Trituration

Amalgam - properties

Amalgam

- Wear and pressure resistance (2mm thickness ast least)
- Easy handling
- Thermal and electrical conductivity
- Corrosion
- Bad aesthetics
- ≻Flow

Conventional amalgam High silver amalgam

- Ag 68 70%
- Sn 24 26%
- Cu -6%
- (Zn -2%)

Non gamma2 High copper amalgam

- Copper 12 13%
- Coppe 25%

Better mechanical properties Low risk of corrosion Low flow and creep

Mixing of amalgam

Hand mixing (obsolete)

Power driven trituration

Amalgamators

Preparation instruments

Filling instruments

> Carvers

➢ Burnishers

Preparation instruments - power driven Burs

Diamonds

Preparation instruments - hand

Amalgam carrier

Filling instruments condensors and spatulas

Condensor stamen

Condensor with straight front

Condensor and burnisher - spatula combined

Burnisher - spatula Angular- trough edge trough face

Burnisher – spatula, angular three face

> Burnishers

Ball condensor – used as a burnisher at most

