

Ionizing radiation, radiation protection

Oldřich Ott, Petr Nádeníček, 2011/12

Ionizing radiation (IR):

 is caused by the energetic particles or waves that have the potential to ionize an atom or molecule through atomic interactions

low energy radiation - low voltage - long w. high energy radiation - high voltage - short w.

heat 98-99%

energy 1-2%

- high energy electrons are emited from catode and strike on the metalic anode

- electromagic radiation
- photon
- short wavelength 10 0,001 nm

- cathode (Wolfram fibre)
 - emits electrons
 - voltage 10-500 kV accelerate el.
- anode (Wolfram, Molybden)

speed of electrons - 165 000 km/s

Bremsstrahlung radiation (braking radiation) – electrons are stopped by repulsive force of electrons in electron shell. Kinetic energy of electons is changed into energy of X-ray photons

Characteristic X-ray – electrons dash out the electrons of K or L shells. Than the vacant site is filled by electrons from a higher energy shell.

The Electromagnetic spectrum:

Interaction of IR with matter:

Gamma (X-) rays – ionize by secondary electrons which are caused by this processes:

Photoelectric effect – electrons are emitted from the atom after the absorption of energy from X-ray

Interaction of IR with matter:

<u>Compton effect</u> – in the electron being given part of the energy and a photon containing the remaining energy being emitted in a <u>different direction</u> from the original.

If the photon still has enough energy, the process may be <u>repeated</u>. If the photon has sufficient energy it can even eject an electron from its host atom entirely (Photoelectric effect).

Interaction of IR with matter:

Pair production - a high-energy photon interacts with an atomic nucleus, allowing it to produce an electron and a positron

Interaction of IR with matter: photon electric interaction (Compton scattering, photoeffect, electron-positron couple) ionisation ionizing radiation chemical changes OHionization radiolysis of water + OHbiological effect

DNA

Biological effects of IR:

chemical – takes 0,001 – <u>1 s</u>

 interaction of ions, radicals, excited atoms with biological organic molecules (DNA, proteins)

biological – takes a few <u>minutes</u> – tens <u>years</u>
functional and morfological changes in cells, organs and whole organism

Biological effects of IR:

stochastic

deterministic

Stochastic effects:

Solid cancers Solid cancers Entry Solid cancers Fears after exposure

no threshold

- increasing D_{ef} increasing probability of stochastic effects
- effect intesity do not dependent on the dose
- no effect immediately after irradiation (after several years)
- carcinoma + genetic effects

Latence: several years for <u>cancer</u> 100s years for <u>genetic effects</u>

lesion is not related to place of irradiation
 D_{ef} (Sv)

Stochastic effects:

Deterministic effects:

threshold

- lesion depends on absorbed doselocal effects
- radiation damage is clinical provable
 example: cataract, erythema, infertility etc
 Det (Sv)

Deterministic effects:

accute radiation syndrome

bone marrow form - threshold 1-2Gy (typical 3-6Gy)

- massive loss of leukocytes, greatly increasing the risk of infection
- uncontrollable <u>bleeding</u> in the mouth, under the skin and in the kidneys
- <u>bone marrow is nearly or completely destroyed</u>, so a bone marrow transplant is required

gastric form – dose 6-10Gy

- gastric and intestinal tissue are severely damaged
- nausea, vomiting, diarrhoea (loss of minerals and water)

Radiosensitivity of tissues:

- activ bone marrow, lymphoid organs, sex gland, gastrointestinal system
- skin, mucous membrane (oesophagus, stomach, urinary bladder), lens
- blood vessel, growing cartilage, growing bone
- completed cartilage and bone, lungs, endocrinal system
- muscle, central nerve system

Embryo

- 2 weeks "everything or nothing"
- 3.–8. w organogenesis, risk of malformations
- 8.–15. w risk of mental handicap
- after 15. w the same resistance as born child

The highest radiosensitivity – 1. third of gravidity!

Ionizing radiation - etiology:

- natural : artificial = 5:1
- 54 % Radon (Rn)
- 16 % cosmic radiation
- 19 % gama radiation

- 1 % nuclear energy
- 2 % professional irradiation
- 2 % nuclear fall-out

- □ Natural radionuclid in humans
- Gama from Earth surfice
- Nuclear fall-out
- Medical irradiation

The rest

Radiation employee $D_{ef} - 5y - 100 \text{ mSv}$ $D_{ef} - 1y - 50 \text{ mSv}$ $D_{ekv} - 1y - 1ens - 150$ 50 mSv

A pregnant woman – during whole pregnancy - 1 mSv

 $D_{ef} - 1 \text{ mSv}$

- <u>several years</u> external irradiation from nature sources
- <u>several years</u> internal irradiation from potassium in body
- < 1 year internal irradiation from **Radon** in buildings
- <u>severals months</u> external irradiation in high altitude

• **<u>100-1000 hours</u>** – external irradiation during long flight

1 mSv – 1 year limit for irradiation for person in population.

Probability of death – 50 mSv:

- irradiation of 50 mSv
- 1 year work in "industry"
- smoke 10 packs of cigaret
- 15 years in household with smoker
- drink 50 bottle of good wine
- 1500 km tour on the bicycle
- 45 000 km travel by car

death probability - 1:10000

Effective doses of X-ray examinations:

Type of examination	Typical effective dose (mSv)		Time to stay in natural background radiation
R. of hands, joints	less 0,01	0,5	1,5 day
R. of chest	0,02	1	3 days
Radiogram of skull	0,07	3,5	10 days
R. of Th spine	0,7	35	3,5 months
R. of pelvis	0,7	35	3,5 months
R. of abdomen	1	50	5 months
R. of hip joint	0,3	15	1,5 months
R. of L spine	1,3	65	6 months
urography	2,5	125	1 year
Fluoroscopy of stomach	3	150	1,2 years
Fluoroscopy of small intestinum			
(enteroclysis)	3	150	1,2 years
irrigoscopy	7	350	2,8 years
CT of head	2,3	150	11 months
CT of chest	8	400	3,2 years
CT of abdomen or pelvis	10	500	4 years

Effective doses of examination in NM:

Type of examination	Typical effective dose (mSv)	Time to stay in natural background radiation
Static scitigraphy of kidneys	1,5	7 months
Dynamic scintigraphy of kidneys	2,2	10,5 months
Dynamic cholescintigraphy	2,3	11 months
Scintigraphy of skeleton	3,4	16 months
Perfused scintigraphy of lungs	1,2	6 months
Scintigraphy of thyroid	2,2	10,5 months
Scintigraphy of myocardium	7,5	3 years

Radiation protection

Protection of patients:

- Was the examination done?
- Is it the best type of examination?
- Explanation of problem?
- Do you necessary need this examinaton?
- Do you need the examination now?

EUROATOM (law 18/1997)

- aim of radiation protection (elimination of deterministic effects, minimalisation stochastic effects)
- principle of working with IR (reasons for working, optimalisation, limitation)
- public notices of SÚJB (184/1997, 146/1997, 214/1997, 307/2002)

Categories of workplaces:

- 1st category small sources, denzitometry, dental X-ray
 2nd category – radiodiagnostics, therapy
- 3rd category particle accelerators
- 4th category nuclear power station, disposal site of nuslear waste

Filtration and shades:

Filtration – reduces intensity of low energy X-ray, reduces irradiation of skin and hypodermis
- 13Al, 29Cu layer

Aluminium, Copper

Filtration and shades:

Secundary (Bucky s) shade – absorbs secundary and scattered radiation - from lead belts

*Radiation protection:

✓ apron, collar

✓ diaphragm

 \checkmark children – fixation equipment

physical

time - work as quickly as possible distance – by doubling the distance the dose rate is quartered shielding - α radiation - clothes, paper, plexiglass β radiation – plexiglass or aluminum γ rays – lead, steel, baryum concrete neutron radiation – materials containing a lot of hydrogen, cadmium and boron

<u>chemical</u> - radioprotective substances

biological – improving the immunity

Dosimetric magnitudes:

 express quantity of effects of ionizing radiation to matter (tissue, patient)

Protection of workers with IR:

personal dosimetry

- measure an absolute dose received over a period of time
- by personal dosimetres

dozimetres: <u>film</u>, termoluminescent, scintilation, electrical, chemical

Protection of patients:

Principle 1: reasons of medical irradiation

 risk of the radiation damage must be less than a benefit for the patient

Principle 2: optimalization

 it is needed to aplicate the minimal necessary quantity of radiation which guarantees the quality of radiogram

