Restorative dentistry - aesthetics

Contemporary trends

- Minimally invasive approach
- Adhesive materials and techniques

Composites

Natural composites

Combination of materials – final product has much better properties in comparison to summation of the components

Composites in dentistry

Chemically bondedn mixture of organic matrix and inoprganic polymer

Bonding

Mechanic

Specific

Mechanic
Irregulartiies of the surface

> Specific

Physical Chemical

Specific

Physical – intermolecular forces - Van der Waals, hydrogenium bridges

> Specific

- Sandblasting
- **Electrolytic**
- > Silanization
- Plazma coating
- **>** Silanization

Adhesive preparation of surfaces

- Creates irregularities
- Increases surface energy

Adhesion of dental materials

Composites - micromechanical

Adhesives – micromechanical, specific

Glassionomers - specific

Enamel

Aprismatic enamel

Aprismatic etching, aprismatic retentive pattern

Intraprismatic retentive pattern

Interprismatic retentive pattern

Dentin

Dentin

- More water and organic substances
- Low surface energy
- Tubular liquid
- Connection with pulp chamber
- Smear layer
- Variable composition of dentin (young, old person, cavity, root canal).

Smear layer

Etched dentin

Dentin tubules with collagen fibres

Dentin tags

Tooth Structure: ENAMEL

Bonding do Enamel

Tooth Structure: DENTIN

Mineral

Organic

Tooth Structure: DENTIN

35%UE4 8.0 kV X15.0K 2.00 m

1.9µm

Self Limiting Etch

Operative Dentistry, 2000, 25, 186-194

que Etching Mean deepest intertubular Gei demineralization KE-OP Kerr Etchant 5.8 µm SE-OP Scotchbrand 3.0 µm Etching Gel UE-OP 1.9 µm Ultraetch :-=0 Kerr Etchant 5.8 µm SE-PO 3.0 µm Scotchbond Etching Gel

The Effect of Donath Dentin Deminerali Serio Bond Strengths and of the Hybrid Layer

J Perdigão • KN May, Jr AD Wilder, Jr • M Lopes

Bonding to Porcelain

BONDING AGENTS

Generations

1st Generation: (1956)

- Glycerophosphoric acid
- DMA Resin
- Resin to tooth
- No longer used (poor clinical results: 1-3 MPa)

2nd Generation: (1970's)

- Unfilled Resin
- Bis-GMA or HEMA
- Ionic bond to calcium
- No longer used (weak bond strength, microleakage)

Generations

3rd Generation: (1980's)

- Etch + Hydrophilic Primer + Unfilled Resin
- Partial removal and/or Modification of smear layer
- Resin did not penetrate through smear layer

4th Generation: (1982)

- Total Etch (Phosphoric Acid) + Primer + Adhesive
- Complete removal of smear layer
- "Wet bonding" (risk of being too wet or dry)
- Formation of hybrid layer and resin tags
- Good clinical results

Generations

5th Generation: (1990's)

- Total Etch + Adhesive
- Hydrophilic monomers
- Formation of hybrid layer and resin tags

6th Generation: (late 1990's - 2000)

- Self-etching primer + Hydrophobic adhesive
- Partial removal of smear layer
- Chemical instability of primer

7th Generation: (2000's)

- One bottle
- Partial removal of smear layer
- Chemical instability

7th Generation Bonding (all in one)

Rinse

7th Generation Bonding (all in one)

Perdigão J, Dutra-Corrêa M, Castilhos N, Carmo ARP, Anauate-Netto C, Cordeiro HJD, et al. One-year clinical performance of self-etch adhesives in posterior restorations. Am J Dent. 2007 Apr; 20(2):125-33

1) Etching

Etching too long can etch too deep, making it difficult for the resins to reach sound tooth structure.

2) Drying dentin

Over drying the dentin after etching can be very destructive to bond values with some adhesives.

3) Application time

Too short of application time may not allow for proper volatilization of the solvents or complete resin hybridization. This is critical with self etching systems.

4) Thinning / drying

Too thin of adhesive layer doesn't allow for proper curing due to oxygen inhibition. Too thick and the adhesive may still contain solvents.

Air thin / Dry

5) Light curing

Too short or insufficient light cure equals partially polymerized resins.

6) Composite Placement

Improper adaptation of the composite to the adhesive can create voids at the bonding interface.

7) Contamination

- Blood
- Sulcular fluid
- etc...

8) Deteriorated product

- Expired
- Volatilized

ULTRADENT PRODUCTS INC.

PATENT

PENDING

Iroubalikova@gmail.com

Kdy máme správně nabondováno?

Polymerization shrinkage

Towards light source?

Ligth curing composits

Ligth curing composits

Selfcuring composits

Polymerization stress depends on

Material

C - factor

Mode of application

Mode of polymerization

Polymerization

Continual polymerization Min. 500 mW/cm² 40 s

2 step polymerization

Soft start

Continuos increasing to 750 mW/cm² during 10 s and polymerization 30s

2 step polymerization with interruption

100 – 300 mW/cm² 3-5 s, přerušoi na 3 min, pakpolymerovat 750 mW/cm² po 30 s

Polymerization units

Quartz Tungsten Halogen (QTH)

Plasma – Arc (PAC)

Light Emitting Diode (LED)

Light

- Electromagnetic radiation
 - -Wavelength
 - -Amplitude Photons

Beam

- Reflection
- deflection

3variables

Chroma – wavelength

Hue – amplitude

Value - cleanliness

Old Middle age Young

Translucency

Fluorescency

Absorption of light and irradiation back – different wavelength
Absorption ultraviolet – irradiation blue
In dark room – teeth are bright and white after comming from sunny light

Opalescency – blue or grey colour up to incisal edge

Mamelons Opalescency Halo effect

Optical size

Surface texture

Dentin shades
Desaturation
Enamel on the surface
Opalescence
White spots
Characterization
inside enamel

Vanini

Imitation of tooth structure

Univerzální dentin

COLOUR CHART (PATENTED)

NAME

AGE TOOTH

DATE

BC: 1-2-3-4

V: 1-2-3

I: 1-2-3-4

w-m

0: 1-2-3-4-5

b-g-a

C: 1-2-3-4-5

w-a-y-b

UD 1 2 3 3,5 4 5 6

GE1 GE2 GE3

IW IM

OBN OG OA

OW IW IM OA SW SY SB

