Permanent filling materials

Amalgam

Metal-like restorative material composed of silver-tin-copper alloy and mercury.

Composition

Mercury

• Metal alloy (Silver, tin, copper, zinc)

Mercury

Clean, destilled Heavy metal, liquid (room temperature)

Particles of the alloy

Irregulary shaped (filings - lathe cut)

✓ Microsphers

Combination of the two

✓ Spheroids

Particles shape

<u>High – Copper Amalgam</u> Microsphers of the same composition (unicompositional)

Mixture of irregular and spherical particles of different or the same composition (admixed)

Production of irregular particles

Ingot cooled slowly

Ingot heated at 400°C (6 – 8 hours) (homogeneous distribution of Ag₃Sn)

Ingot cut on the lathe, particles passed trough a fine sieve and ball milled to form the proper particle size.

Aging of particles (60 - 100°C, 6 – 8 hours)

Particle size: 60 – 120 µm in length 10 – 70 µm in width 10 – 35 µm in thickness

Production of spheroid particles

Molten alloy is spraying into water under high pressue

Production of spherical particles

Molten alloy is spraying under high pressue of inert gas through a fine crack in a crucible into a large chamber

Diameter of the sphers: $2 - 43 \mu m$

Importance of components

- Silver: slow reaction with mercury, accelerates setting process, increaes mechanical properties, increases corrosion resistance.
- Tin: fast reaction with mercury, retardates setting time, decreases mechanical propeties, decreases corrosion resistance

Copper: difficult slow reaction with mercury, increases hardness and corrosion resistance.

- Zinc: antioxidant agent, reason for internal electrochemical corrosion.
- Noble metals: increase corrosion resistance and price

Conventional amalgam alloylow copper amalgam

- Silver 70%
- Tin 24-26%
- Copper up to 6%
- Zinc o 2%
- Noble metals (gold, platimun) in some alloys

Setting of conventional amalgam

Alloy contents silver, tin and copper. There are intermetalic compounds – phases Gamma phase Ag-Sn **Epsilon phase Cu-Sn** Mercury dissolves particles of amalgam, arise new compounds - phases Ag-Hg: gamma 1 phase Sn-Hg: gamma 2 phase The new phases crystallize Part of gamma phase does not dissolve Therefore the amalgam contains after setting gamma 1,gamma 2 and gamma phase.

Amalgamation

Procesy amalgamace

Konvenční amalgám

External electrochemic corrosion

- Gamma 2 phase is not stable, Tin releases easily and disappears, mercury can dissolve gamma phase. The mechanical resistance to occlusal loading decreases
- The process of degradation of gamma 2 phase is external electrochemic corrosion.

Internal electrochemic corrosion

• Zinc decomposes water: hydrogen and oxygen cause expansion of the filling,

Flow and creep

Flow is deformation of amalgam that is not completely set.

Creep is deformation of amalgam that is completely set. The filling is beaten during occlusal loading – smal thin spits break – margins of filling become rough.

High copper amalgam (non gamma 2)

- Content of copper increased up to 12%-30%
- Less tin and also silver

Better mechanical resistance, lower tendency to corrosion, lower flow and lower creep.

Setting of non gamma 2 amalgam

- Mercury dissolves particles of amalgam:
- Gamma 1 phase a gamma 2 phase
- Due high reactivity of cooper and tin eta phase arises, gamma 2 phase dissapears or does not appear (if contenc of copper is around 20% and more)

Setting of high copper amalgam

Amalgamation processes

Amalgam - properties

Amalgam

- > Wear and pressure resistance (2mm thickness ast least)
- Easy handling
- > Thermal and electrical conductivity
- Corrosion
- > Bad aesthetics
- > Flow
- > Creep

Mixing of amalgam Hand mixing (obsolete)

Power driven trituration

Amalgamators

Amalgam carrier

Portion by portion and condensation

Power driven condensor

Special handpiece

> Preparation instruments

Filling instruments

> Carvers

> Burnishers

Preparation instruments - power driven

> Preparation instruments - hand Chisel

Excavator

> Filling instruments condensors and spatulas

Condensor with straight front

Carver -Frahm

Carver - Sapin

Carver Discoid-cleoid

Nosič amalgámu

Condensor stamen

Burnisher - spatula Angular- trough edge trough face

Burnisher – spatula, angular three face

Ball condensor – used as a burnisher at most

